Abstract:In human-computer interaction, head pose estimation profoundly influences application functionality. Although utilizing facial landmarks is valuable for this purpose, existing landmark-based methods prioritize precision over simplicity and model size, limiting their deployment on edge devices and in compute-poor environments. To bridge this gap, we propose \textbf{Grouped Attention Deep Sets (GADS)}, a novel architecture based on the Deep Set framework. By grouping landmarks into regions and employing small Deep Set layers, we reduce computational complexity. Our multihead attention mechanism extracts and combines inter-group information, resulting in a model that is $7.5\times$ smaller and executes $25\times$ faster than the current lightest state-of-the-art model. Notably, our method achieves an impressive reduction, being $4321\times$ smaller than the best-performing model. We introduce vanilla GADS and Hybrid-GADS (landmarks + RGB) and evaluate our models on three benchmark datasets -- AFLW2000, BIWI, and 300W-LP. We envision our architecture as a robust baseline for resource-constrained head pose estimation methods.
Abstract:Tokenizers act as a bridge between human language and the latent space of language models, influencing how language is represented in these models. Due to the immense popularity of English-Centric Large Language Models (LLMs), efforts are being made to adapt them for other languages. However, we demonstrate that, from a tokenization standpoint, not all tokenizers offer fair representation for complex script languages such as Tamil, Sinhala, and Hindi, primarily due to the choice of pre-tokenization methods. We go further to show that pre-tokenization plays a more critical role than the tokenization algorithm itself in achieving an egalitarian representation of these complex script languages. To address this, we introduce an improvement to the Byte Pair Encoding (BPE) algorithm by incorporating graphemes, which we term Grapheme Pair Encoding (GPE). Our experiments show that grapheme-based character extraction outperforms byte-level tokenizers for complex scripts. We validate this approach through experiments on Tamil, Sinhala, and Hindi.
Abstract:We conducted a detailed analysis on the quality of web-mined corpora for two low-resource languages (making three language pairs, English-Sinhala, English-Tamil and Sinhala-Tamil). We ranked each corpus according to a similarity measure and carried out an intrinsic and extrinsic evaluation on different portions of this ranked corpus. We show that there are significant quality differences between different portions of web-mined corpora and that the quality varies across languages and datasets. We also show that, for some web-mined datasets, Neural Machine Translation (NMT) models trained with their highest-ranked 25k portion can be on par with human-curated datasets.