Abstract:Deep Neural Network (DNN) based classifiers have recently been used for the modulation classification of RF signals. These classifiers have shown impressive performance gains relative to conventional methods, however, they are vulnerable to imperceptible (low-power) adversarial attacks. Some of the prominent defense approaches include adversarial training (AT) and randomized smoothing (RS). While AT increases robustness in general, it fails to provide resilience against previously unseen adaptive attacks. Other approaches, such as Randomized Smoothing (RS), which injects noise into the input, address this shortcoming by providing provable certified guarantees against arbitrary attacks, however, they tend to sacrifice accuracy. In this paper, we study the problem of designing robust DNN-based modulation classifiers that can provide provable defense against arbitrary attacks without significantly sacrificing accuracy. To this end, we first analyze the spectral content of commonly studied attacks on modulation classifiers for the benchmark RadioML dataset. We observe that spectral signatures of un-perturbed RF signals are highly localized, whereas attack signals tend to be spread out in frequency. To exploit this spectral heterogeneity, we propose Filtered Randomized Smoothing (FRS), a novel defense which combines spectral filtering together with randomized smoothing. FRS can be viewed as a strengthening of RS by leveraging the specificity (spectral Heterogeneity) inherent to the modulation classification problem. In addition to providing an approach to compute the certified accuracy of FRS, we also provide a comprehensive set of simulations on the RadioML dataset to show the effectiveness of FRS and show that it significantly outperforms existing defenses including AT and RS in terms of accuracy on both attacked and benign signals.
Abstract:Certifiable robustness gives the guarantee that small perturbations around an input to a classifier will not change the prediction. There are two approaches to provide certifiable robustness to adversarial examples: a) explicitly training classifiers with small Lipschitz constants, and b) Randomized smoothing, which adds random noise to the input to create a smooth classifier. We propose \textit{SPLITZ}, a practical and novel approach which leverages the synergistic benefits of both the above ideas into a single framework. Our main idea is to \textit{split} a classifier into two halves, constrain the Lipschitz constant of the first half, and smooth the second half via randomization. Motivation for \textit{SPLITZ} comes from the observation that many standard deep networks exhibit heterogeneity in Lipschitz constants across layers. \textit{SPLITZ} can exploit this heterogeneity while inheriting the scalability of randomized smoothing. We present a principled approach to train \textit{SPLITZ} and provide theoretical analysis to derive certified robustness guarantees during inference. We present a comprehensive comparison of robustness-accuracy tradeoffs and show that \textit{SPLITZ} consistently improves upon existing state-of-the-art approaches on MNIST and CIFAR-10 datasets. For instance, with $\ell_2$ norm perturbation budget of \textbf{$\epsilon=1$}, \textit{SPLITZ} achieves $\textbf{43.2\%}$ top-1 test accuracy on CIFAR-10 dataset compared to state-of-art top-1 test accuracy $\textbf{39.8\%}
Abstract:With the growing adoption of machine learning (ML) systems in areas like law enforcement, criminal justice, finance, hiring, and admissions, it is increasingly critical to guarantee the fairness of decisions assisted by ML. In this paper, we study the tradeoff between fairness and accuracy under the statistical notion of equalized odds. We present a new upper bound on the accuracy (that holds for any classifier), as a function of the fairness budget. In addition, our bounds also exhibit dependence on the underlying statistics of the data, labels and the sensitive group attributes. We validate our theoretical upper bounds through empirical analysis on three real-world datasets: COMPAS, Adult, and Law School. Specifically, we compare our upper bound to the tradeoffs that are achieved by various existing fair classifiers in the literature. Our results show that achieving high accuracy subject to a low-bias could be fundamentally limited based on the statistical disparity across the groups.
Abstract:As machine learning (ML) based systems are adopted in domains such as law enforcement, criminal justice, finance, hiring and admissions, ensuring the fairness of ML aided decision-making is becoming increasingly important. In this paper, we focus on the problem of fair classification, and introduce a novel min-max F-divergence regularization framework for learning fair classification models while preserving high accuracy. Our framework consists of two trainable networks, namely, a classifier network and a bias/fairness estimator network, where the fairness is measured using the statistical notion of F-divergence. We show that F-divergence measures possess convexity and differentiability properties, and their variational representation make them widely applicable in practical gradient based training methods. The proposed framework can be readily adapted to multiple sensitive attributes and for high dimensional datasets. We study the F-divergence based training paradigm for two types of group fairness constraints, namely, demographic parity and equalized odds. We present a comprehensive set of experiments for several real-world data sets arising in multiple domains (including COMPAS, Law Admissions, Adult Income, and CelebA datasets). To quantify the fairness-accuracy tradeoff, we introduce the notion of fairness-accuracy receiver operating characteristic (FA-ROC) and a corresponding \textit{low-bias} FA-ROC, which we argue is an appropriate measure to evaluate different classifiers. In comparison to several existing approaches for learning fair classifiers (including pre-processing, post-processing and other regularization methods), we show that the proposed F-divergence based framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.