As machine learning (ML) based systems are adopted in domains such as law enforcement, criminal justice, finance, hiring and admissions, ensuring the fairness of ML aided decision-making is becoming increasingly important. In this paper, we focus on the problem of fair classification, and introduce a novel min-max F-divergence regularization framework for learning fair classification models while preserving high accuracy. Our framework consists of two trainable networks, namely, a classifier network and a bias/fairness estimator network, where the fairness is measured using the statistical notion of F-divergence. We show that F-divergence measures possess convexity and differentiability properties, and their variational representation make them widely applicable in practical gradient based training methods. The proposed framework can be readily adapted to multiple sensitive attributes and for high dimensional datasets. We study the F-divergence based training paradigm for two types of group fairness constraints, namely, demographic parity and equalized odds. We present a comprehensive set of experiments for several real-world data sets arising in multiple domains (including COMPAS, Law Admissions, Adult Income, and CelebA datasets). To quantify the fairness-accuracy tradeoff, we introduce the notion of fairness-accuracy receiver operating characteristic (FA-ROC) and a corresponding \textit{low-bias} FA-ROC, which we argue is an appropriate measure to evaluate different classifiers. In comparison to several existing approaches for learning fair classifiers (including pre-processing, post-processing and other regularization methods), we show that the proposed F-divergence based framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.