Abstract:Page-level analysis of documents has been a topic of interest in digitization efforts, and multimodal approaches have been applied to both classification and page stream segmentation. In this work, we focus on capturing finer semantic relations between pages of a multi-page document. To this end, we formalize the task as semantic parsing of interpage relations and we propose an end-to-end approach for interpage dependency extraction, inspired by the dependency parsing literature. We further design a multi-task training approach to jointly optimize for page embeddings to be used in segmentation, classification, and parsing of the page dependencies using textual and visual features extracted from the pages. Moreover, we also combine the features from two modalities to obtain multimodal page embeddings. To the best of our knowledge, this is the first study to extract rich semantic interpage relations from multi-page documents. Our experimental results show that the proposed method increased LAS by 41 percentage points for semantic parsing, increased accuracy by 33 percentage points for page stream segmentation, and 45 percentage points for page classification over a naive baseline.
Abstract:Analyzing the relation between intelligence and neural activity is of the utmost importance in understanding the working principles of the human brain in health and disease. In existing literature, functional brain connectomes have been used successfully to predict cognitive measures such as intelligence quotient (IQ) scores in both healthy and disordered cohorts using machine learning models. However, existing methods resort to flattening the brain connectome (i.e., graph) through vectorization which overlooks its topological properties. To address this limitation and inspired from the emerging graph neural networks (GNNs), we design a novel regression GNN model (namely RegGNN) for predicting IQ scores from brain connectivity. On top of that, we introduce a novel, fully modular sample selection method to select the best samples to learn from for our target prediction task. However, since such deep learning architectures are computationally expensive to train, we further propose a \emph{learning-based sample selection} method that learns how to choose the training samples with the highest expected predictive power on unseen samples. For this, we capitalize on the fact that connectomes (i.e., their adjacency matrices) lie in the symmetric positive definite (SPD) matrix cone. Our results on full-scale and verbal IQ prediction outperforms comparison methods in autism spectrum disorder cohorts and achieves a competitive performance for neurotypical subjects using 3-fold cross-validation. Furthermore, we show that our sample selection approach generalizes to other learning-based methods, which shows its usefulness beyond our GNN architecture.