Abstract:The resolution of an image is a very important criterion for evaluating the quality of the image. A higher resolution of an image is always preferable as images of lower resolution are unsuitable due to fuzzy quality. A higher resolution of an image is important for various fields such as medical imaging; astronomy works and so on as images of lower resolution becomes unclear and indistinct when their sizes are enlarged. In recent times, various research works are performed to generate a higher resolution of an image from its lower resolution. In this paper, we have proposed a technique of generating higher resolution images form lower resolution using Residual in Residual Dense Block network architecture with a deep network. We have also compared our method with other methods to prove that our method provides better visual quality images.
Abstract:Promoter is a short region of DNA which is responsible for initiating transcription of specific genes. Development of computational tools for automatic identification of promoters is in high demand. According to the difference of functions, promoters can be of different types. Promoters may have both intra and inter class variation and similarity in terms of consensus sequences. Accurate classification of various types of sigma promoters still remains a challenge. We present iPromoter-BnCNN for identification and accurate classification of six types of promoters - sigma24, sigma28, sigma32, sigma38, sigma54, sigma70. It is a Convolutional Neural Network (CNN) based classifier which combines local features related to monomer nucleotide sequence, trimer nucleotide sequence, dimer structural properties and trimer structural properties through the use of parallel branching. We conducted experiments on a benchmark dataset and compared with two state-of-the-art tools to show our supremacy on 5-fold cross-validation. Moreover, we tested our classifier on an independent test dataset. Our proposed tool iPromoter-BnCNN along with the source code is freely available at https://cutt.ly/te6XISV.