Abstract:In the modern agricultural industry, technology plays a crucial role in the advancement of cultivation. To increase crop productivity, soil require some specific characteristics. For watermelon cultivation, soil needs to be sandy and of high temperature with proper irrigation. This research aims to design and implement an intelligent IoT-based soil characterization system for the watermelon field to measure the soil characteristics. IoT based developed system measures moisture, temperature, and pH of soil using different sensors, and the sensor data is uploaded to the cloud via Arduino and Raspberry Pi, from where users can obtain the data using mobile application and webpage developed for this system. To ensure the precision of the framework, this study includes the comparison between the readings of the soil parameters by the existing field soil meters, the values obtained from the sensors integrated IoT system, and data obtained from soil science laboratory. Excessive salinity in soil affects the watermelon yield. This paper proposes a model for the measurement of soil salinity based on soil resistivity. It establishes a relationship between soil salinity and soil resistivity from the data obtained in the laboratory using artificial neural network (ANN).
Abstract:Surface electromyography (EMG) serves as a pivotal tool in hand gesture recognition and human-computer interaction, offering a non-invasive means of signal acquisition. This study presents a novel methodology for classifying hand gestures using EMG signals. To address the challenges associated with feature extraction where, we explored 23 distinct morphological, time domain and frequency domain feature extraction techniques. However, the substantial size of the features may increase the computational complexity issues that can hinder machine learning algorithm performance. We employ an efficient feature selection approach, specifically an extra tree classifier, to mitigate this. The selected potential feature fed into the various machine learning-based classification algorithms where our model achieved 97.43\% accuracy with the KNN algorithm and selected feature. By leveraging a comprehensive feature extraction and selection strategy, our methodology enhances the accuracy and usability of EMG-based hand gesture recognition systems. The higher performance accuracy proves the effectiveness of the proposed model over the existing system. \keywords{EMG signal, machine learning approach, hand gesture recognition.