Abstract:Parkinson's disease (PD) is a progressive neurological disorder that impairs movement control, leading to symptoms such as tremors, stiffness, and bradykinesia. Many researchers analyzing handwriting data for PD detection typically rely on computing statistical features over the entirety of the handwriting task. While this method can capture broad patterns, it has several limitations, including a lack of focus on dynamic change, oversimplified feature representation, lack of directional information, and missing micro-movements or subtle variations. Consequently, these systems face challenges in achieving good performance accuracy, robustness, and sensitivity. To overcome this problem, we proposed an optimized PD detection methodology that incorporates newly developed dynamic kinematic features and machine learning (ML)-based techniques to capture movement dynamics during handwriting tasks. In the procedure, we first extracted 65 newly developed kinematic features from the first and last 10% phases of the handwriting task rather than using the entire task. Alongside this, we also reused 23 existing kinematic features, resulting in a comprehensive new feature set. Next, we enhanced the kinematic features by applying statistical formulas to compute hierarchical features from the handwriting data. This approach allows us to capture subtle movement variations that distinguish PD patients from healthy controls. To further optimize the feature set, we applied the Sequential Forward Floating Selection method to select the most relevant features, reducing dimensionality and computational complexity. Finally, we employed an ML-based approach based on ensemble voting across top-performing tasks, achieving an impressive 96.99\% accuracy on task-wise classification and 99.98% accuracy on task ensembles, surpassing the existing state-of-the-art model by 2% for the PaHaW dataset.
Abstract:In the modern agricultural industry, technology plays a crucial role in the advancement of cultivation. To increase crop productivity, soil require some specific characteristics. For watermelon cultivation, soil needs to be sandy and of high temperature with proper irrigation. This research aims to design and implement an intelligent IoT-based soil characterization system for the watermelon field to measure the soil characteristics. IoT based developed system measures moisture, temperature, and pH of soil using different sensors, and the sensor data is uploaded to the cloud via Arduino and Raspberry Pi, from where users can obtain the data using mobile application and webpage developed for this system. To ensure the precision of the framework, this study includes the comparison between the readings of the soil parameters by the existing field soil meters, the values obtained from the sensors integrated IoT system, and data obtained from soil science laboratory. Excessive salinity in soil affects the watermelon yield. This paper proposes a model for the measurement of soil salinity based on soil resistivity. It establishes a relationship between soil salinity and soil resistivity from the data obtained in the laboratory using artificial neural network (ANN).
Abstract:Surface electromyography (EMG) serves as a pivotal tool in hand gesture recognition and human-computer interaction, offering a non-invasive means of signal acquisition. This study presents a novel methodology for classifying hand gestures using EMG signals. To address the challenges associated with feature extraction where, we explored 23 distinct morphological, time domain and frequency domain feature extraction techniques. However, the substantial size of the features may increase the computational complexity issues that can hinder machine learning algorithm performance. We employ an efficient feature selection approach, specifically an extra tree classifier, to mitigate this. The selected potential feature fed into the various machine learning-based classification algorithms where our model achieved 97.43\% accuracy with the KNN algorithm and selected feature. By leveraging a comprehensive feature extraction and selection strategy, our methodology enhances the accuracy and usability of EMG-based hand gesture recognition systems. The higher performance accuracy proves the effectiveness of the proposed model over the existing system. \keywords{EMG signal, machine learning approach, hand gesture recognition.