Abstract:While writing Bengali using English keyboard, users often make spelling mistakes. The accuracy of any Bengali spell checker or paragraph correction module largely depends on the kind of error dataset it is based on. Manual generation of such error dataset is a cumbersome process. In this research, We present an algorithm for automatic misspelled Bengali word generation from correct word through analyzing Bengali writing pattern using QWERTY layout English keyboard. As part of our analysis, we have formed a list of most commonly used Bengali words, phonetically similar replaceable clusters, frequently mispressed replaceable clusters, frequently mispressed insertion prone clusters and some rules for Juktakkhar (constant letter clusters) handling while generating errors.
Abstract:Question classification (QC) is the primary step of the Question Answering (QA) system. Question Classification (QC) system classifies the questions in particular classes so that Question Answering (QA) System can provide correct answers for the questions. Our system categorizes the factoid type questions asked in natural language after extracting features of the questions. We present a two stage QC system for Bengali. It utilizes one dimensional convolutional neural network for classifying questions into coarse classes in the first stage. Word2vec representation of existing words of the question corpus have been constructed and used for assisting 1D CNN. A smart data balancing technique has been employed for giving data hungry convolutional neural network the advantage of a greater number of effective samples to learn from. For each coarse class, a separate Stochastic Gradient Descent (SGD) based classifier has been used in order to differentiate among the finer classes within that coarse class. TF-IDF representation of each word has been used as feature for the SGD classifiers implemented as part of second stage classification. Experiments show the effectiveness of our proposed method for Bengali question classification.
Abstract:QA classification system maps questions asked by humans to an appropriate answer category. A sound question classification (QC) system model is the pre-requisite of a sound QA system. This work demonstrates phases of assembling a QA type classification model. We present a comprehensive comparison (performance and computational complexity) among some machine learning based approaches used in QC for Bengali language.