Abstract:We derive a closed-form approximation of the stationary distribution of the Age of Information (AoI) of the semi-persistent scheduling (SPS) protocol which is a core part of NR-V2X, an important standard for vehicular communications. While prior works have studied the average AoI under similar assumptions, in this work we provide a full statistical characterization of the AoI by deriving an approximation of its probability mass function. As result, besides the average AoI, we are able to evaluate the age-violation probability, which is of particular relevance for safety-critical applications in vehicular domains, where the priority is to ensure that the AoI does not exceed a predefined threshold during system operation. The study reveals complementary behavior of the age-violation probability compared to the average AoI and highlights the role of the duration of the reservation as a key parameter in the SPS protocol. We use this to demonstrate how this crucial parameter should be tuned according to the performance requirements of the application.
Abstract:We introduce the concepts of inverse solvability and security for a generic linear forward model and demonstrate how they can be applied to models used in federated learning. We provide examples of such models which differ in the resulting inverse solvability and security as defined in this paper. We also show how the large number of users participating in a given iteration of federated learning can be leveraged to increase both solvability and security. Finally, we discuss possible extensions of the presented concepts including the nonlinear case.
Abstract:Lagrange coded computation (LCC) is essential to solving problems about matrix polynomials in a coded distributed fashion; nevertheless, it can only solve the problems that are representable as matrix polynomials. In this paper, we propose AICC, an AI-aided learning approach that is inspired by LCC but also uses deep neural networks (DNNs). It is appropriate for coded computation of more general functions. Numerical simulations demonstrate the suitability of the proposed approach for the coded computation of different matrix functions that are often utilized in digital signal processing.