Abstract:We introduce the concepts of inverse solvability and security for a generic linear forward model and demonstrate how they can be applied to models used in federated learning. We provide examples of such models which differ in the resulting inverse solvability and security as defined in this paper. We also show how the large number of users participating in a given iteration of federated learning can be leveraged to increase both solvability and security. Finally, we discuss possible extensions of the presented concepts including the nonlinear case.
Abstract:Lagrange coded computation (LCC) is essential to solving problems about matrix polynomials in a coded distributed fashion; nevertheless, it can only solve the problems that are representable as matrix polynomials. In this paper, we propose AICC, an AI-aided learning approach that is inspired by LCC but also uses deep neural networks (DNNs). It is appropriate for coded computation of more general functions. Numerical simulations demonstrate the suitability of the proposed approach for the coded computation of different matrix functions that are often utilized in digital signal processing.