DiverSe
Abstract:Language models are promising solutions for tackling increasing complex problems. In software engineering, they recently attracted attention in code assistants, with programs automatically written in a given programming language from a programming task description in natural language. They have the potential to save time and effort when writing code. However, these systems are currently poorly understood, preventing them from being used optimally. In this paper, we investigate the various input parameters of two language models, and conduct a study to understand if variations of these input parameters (e.g. programming task description and the surrounding context, creativity of the language model, number of generated solutions) can have a significant impact on the quality of the generated programs. We design specific operators for varying input parameters and apply them over two code assistants (Copilot and Codex) and two benchmarks representing algorithmic problems (HumanEval and LeetCode). Our results showed that varying the input parameters can significantly improve the performance of language models. However, there is a tight dependency when varying the temperature, the prompt and the number of generated solutions, making potentially hard for developers to properly control the parameters to obtain an optimal result. This work opens opportunities to propose (automated) strategies for improving performance.
Abstract:Software product line (SPL) engineers put a lot of effort to ensure that, through the setting of a large number of possible configuration options, products are acceptable and well-tailored to customers' needs. Unfortunately, options and their mutual interactions create a huge configuration space which is intractable to exhaustively explore. Instead of testing all products, machine learning techniques are increasingly employed to approximate the set of acceptable products out of a small training sample of configurations. Machine learning (ML) techniques can refine a software product line through learned constraints and a priori prevent non-acceptable products to be derived. In this paper, we use adversarial ML techniques to generate adversarial configurations fooling ML classifiers and pinpoint incorrect classifications of products (videos) derived from an industrial video generator. Our attacks yield (up to) a 100% misclassification rate and a drop in accuracy of 5%. We discuss the implications these results have on SPL quality assurance.
Abstract:Most modern software systems (operating systems like Linux or Android, Web browsers like Firefox or Chrome, video encoders like ffmpeg, x264 or VLC, mobile and cloud applications, etc.) are highly-configurable. Hundreds of configuration options, features, or plugins can be combined, each potentially with distinct functionality and effects on execution time, security, energy consumption, etc. Due to the combinatorial explosion and the cost of executing software, it is quickly impossible to exhaustively explore the whole configuration space. Hence, numerous works have investigated the idea of learning it from a small sample of configurations' measurements. The pattern "sampling, measuring, learning" has emerged in the literature, with several practical interests for both software developers and end-users of configurable systems. In this survey, we report on the different application objectives (e.g., performance prediction, configuration optimization, constraint mining), use-cases, targeted software systems and application domains. We review the various strategies employed to gather a representative and cost-effective sample. We describe automated software techniques used to measure functional and non-functional properties of configurations. We classify machine learning algorithms and how they relate to the pursued application. Finally, we also describe how researchers evaluate the quality of the learning process. The findings from this systematic review show that the potential application objective is important; there are a vast number of case studies reported in the literature from the basis of several domains and software systems. Yet, the huge variant space of configurable systems is still challenging and calls to further investigate the synergies between artificial intelligence and software engineering.
Abstract:Ensuring that all supposedly valid configurations of a software product line (SPL) lead to well-formed and acceptable products is challenging since it is most of the time impractical to enumerate and test all individual products of an SPL. Machine learning classifiers have been recently used to predict the acceptability of products associated with unseen configurations. For some configurations, a tiny change in their feature values can make them pass from acceptable to non-acceptable regarding users' requirements and vice-versa. In this paper, we introduce the idea of leveraging these specific configurations and their positions in the feature space to improve the classifier and therefore the engineering of an SPL. Starting from a variability model, we propose to use Adversarial Machine Learning techniques to create new, adversarial configurations out of already known configurations by modifying their feature values. Using an industrial video generator we show how adversarial configurations can improve not only the classifier, but also the variability model, the variability implementation, and the testing oracle.
Abstract:The strength of chess engines together with the availability of numerous chess games have attracted the attention of chess players, data scientists, and researchers during the last decades. State-of-the-art engines now provide an authoritative judgement that can be used in many applications like cheating detection, intrinsic ratings computation, skill assessment, or the study of human decision-making. A key issue for the research community is to gather a large dataset of chess games together with the judgement of chess engines. Unfortunately the analysis of each move takes lots of times. In this paper, we report our effort to analyse almost 5 millions chess games with a computing grid. During summer 2015, we processed 270 millions unique played positions using the Stockfish engine with a quite high depth (20). We populated a database of 1+ tera-octets of chess evaluations, representing an estimated time of 50 years of computation on a single machine. Our effort is a first step towards the replication of research results, the supply of open data and procedures for exploring new directions, and the investigation of software engineering/scalability issues when computing billions of moves.