Abstract:Few-shot and continual learning face two well-known challenges in GANs: overfitting and catastrophic forgetting. Learning new tasks results in catastrophic forgetting in deep learning models. In the case of a few-shot setting, the model learns from a very limited number of samples (e.g. 10 samples), which can lead to overfitting and mode collapse. So, this paper proposes a Continual Few-shot Teacher-Student technique for the generative adversarial network (CFTS-GAN) that considers both challenges together. Our CFTS-GAN uses an adapter module as a student to learn a new task without affecting the previous knowledge. To make the student model efficient in learning new tasks, the knowledge from a teacher model is distilled to the student. In addition, the Cross-Domain Correspondence (CDC) loss is used by both teacher and student to promote diversity and to avoid mode collapse. Moreover, an effective strategy of freezing the discriminator is also utilized for enhancing performance. Qualitative and quantitative results demonstrate more diverse image synthesis and produce qualitative samples comparatively good to very stronger state-of-the-art models.
Abstract:The goal of style transfer is, given a content image and a style source, generating a new image preserving the content but with the artistic representation of the style source. Most of the state-of-the-art architectures use transformers or diffusion-based models to perform this task, despite the heavy computational burden that they require. In particular, transformers use self- and cross-attention layers which have large memory footprint, while diffusion models require high inference time. To overcome the above, this paper explores a novel design of Mamba, an emergent State-Space Model (SSM), called Mamba-ST, to perform style transfer. To do so, we adapt Mamba linear equation to simulate the behavior of cross-attention layers, which are able to combine two separate embeddings into a single output, but drastically reducing memory usage and time complexity. We modified the Mamba's inner equations so to accept inputs from, and combine, two separate data streams. To the best of our knowledge, this is the first attempt to adapt the equations of SSMs to a vision task like style transfer without requiring any other module like cross-attention or custom normalization layers. An extensive set of experiments demonstrates the superiority and efficiency of our method in performing style transfer compared to transformers and diffusion models. Results show improved quality in terms of both ArtFID and FID metrics. Code is available at https://github.com/FilippoBotti/MambaST.
Abstract:Text-based person search (TBPS) is a problem that gained significant interest within the research community. The task is that of retrieving one or more images of a specific individual based on a textual description. The multi-modal nature of the task requires learning representations that bridge text and image data within a shared latent space. Existing TBPS systems face two major challenges. One is defined as inter-identity noise that is due to the inherent vagueness and imprecision of text descriptions and it indicates how descriptions of visual attributes can be generally associated to different people; the other is the intra-identity variations, which are all those nuisances e.g. pose, illumination, that can alter the visual appearance of the same textual attributes for a given subject. To address these issues, this paper presents a novel TBPS architecture named MARS (Mae-Attribute-Relation-Sensitive), which enhances current state-of-the-art models by introducing two key components: a Visual Reconstruction Loss and an Attribute Loss. The former employs a Masked AutoEncoder trained to reconstruct randomly masked image patches with the aid of the textual description. In doing so the model is encouraged to learn more expressive representations and textual-visual relations in the latent space. The Attribute Loss, instead, balances the contribution of different types of attributes, defined as adjective-noun chunks of text. This loss ensures that every attribute is taken into consideration in the person retrieval process. Extensive experiments on three commonly used datasets, namely CUHK-PEDES, ICFG-PEDES, and RSTPReid, report performance improvements, with significant gains in the mean Average Precision (mAP) metric w.r.t. the current state of the art.
Abstract:Due to the limitations of current optical and sensor technologies and the high cost of updating them, the spectral and spatial resolution of satellites may not always meet desired requirements. For these reasons, Remote-Sensing Single-Image Super-Resolution (RS-SISR) techniques have gained significant interest. In this paper, we propose Swin2-MoSE model, an enhanced version of Swin2SR. Our model introduces MoE-SM, an enhanced Mixture-of-Experts (MoE) to replace the Feed-Forward inside all Transformer block. MoE-SM is designed with Smart-Merger, and new layer for merging the output of individual experts, and with a new way to split the work between experts, defining a new per-example strategy instead of the commonly used per-token one. Furthermore, we analyze how positional encodings interact with each other, demonstrating that per-channel bias and per-head bias can positively cooperate. Finally, we propose to use a combination of Normalized-Cross-Correlation (NCC) and Structural Similarity Index Measure (SSIM) losses, to avoid typical MSE loss limitations. Experimental results demonstrate that Swin2-MoSE outperforms SOTA by up to 0.377 ~ 0.958 dB (PSNR) on task of 2x, 3x and 4x resolution-upscaling (Sen2Venus and OLI2MSI datasets). We show the efficacy of Swin2-MoSE, applying it to a semantic segmentation task (SeasoNet dataset). Code and pretrained are available on https://github.com/IMPLabUniPr/swin2-mose/tree/official_code
Abstract:Semantic Image Synthesis (SIS) is among the most popular and effective techniques in the field of face generation and editing, thanks to its good generation quality and the versatility is brings along. Recent works attempted to go beyond the standard GAN-based framework, and started to explore Diffusion Models (DMs) for this task as these stand out with respect to GANs in terms of both quality and diversity. On the other hand, DMs lack in fine-grained controllability and reproducibility. To address that, in this paper we propose a SIS framework based on a novel Latent Diffusion Model architecture for human face generation and editing that is both able to reproduce and manipulate a real reference image and generate diversity-driven results. The proposed system utilizes both SPADE normalization and cross-attention layers to merge shape and style information and, by doing so, allows for a precise control over each of the semantic parts of the human face. This was not possible with previous methods in the state of the art. Finally, we performed an extensive set of experiments to prove that our model surpasses current state of the art, both qualitatively and quantitatively.
Abstract:Neural Radiance Fields (NeRF) have recently emerged as a powerful method for image-based 3D reconstruction, but the lengthy per-scene optimization limits their practical usage, especially in resource-constrained settings. Existing approaches solve this issue by reducing the number of input views and regularizing the learned volumetric representation with either complex losses or additional inputs from other modalities. In this paper, we present KeyNeRF, a simple yet effective method for training NeRF in few-shot scenarios by focusing on key informative rays. Such rays are first selected at camera level by a view selection algorithm that promotes baseline diversity while guaranteeing scene coverage, then at pixel level by sampling from a probability distribution based on local image entropy. Our approach performs favorably against state-of-the-art methods, while requiring minimal changes to existing NeRF codebases.
Abstract:In semantic image synthesis, the state of the art is dominated by methods that use spatially-adaptive normalization layers, which allow for excellent visual generation quality and editing versatility. Granted their efficacy, recent research efforts have focused toward finer-grained local style control and multi-modal generation. By construction though, such layers tend to overlook global image statistics leading to unconvincing local style editing and causing global inconsistencies such as color or illumination distribution shifts. Also, the semantic layout is required for mapping styles in the generator, putting a strict alignment constraint over the features. In response, we designed a novel architecture where cross-attention layers are used in place of de-normalization ones for conditioning the image generation. Our model inherits the advantages of both solutions, retaining state-of-the-art reconstruction quality, as well as improved global and local style transfer. Code and models available at https://github.com/TFonta/CA2SIS.
Abstract:Semantic image synthesis (SIS) refers to the problem of generating realistic imagery given a semantic segmentation mask that defines the spatial layout of object classes. Most of the approaches in the literature, other than the quality of the generated images, put effort in finding solutions to increase the generation diversity in terms of style i.e. texture. However, they all neglect a different feature, which is the possibility of manipulating the layout provided by the mask. Currently, the only way to do so is manually by means of graphical users interfaces. In this paper, we describe a network architecture to address the problem of automatically manipulating or generating the shape of object classes in semantic segmentation masks, with specific focus on human faces. Our proposed model allows embedding the mask class-wise into a latent space where each class embedding can be independently edited. Then, a bi-directional LSTM block and a convolutional decoder output a new, locally manipulated mask. We report quantitative and qualitative results on the CelebMask-HQ dataset, which show our model can both faithfully reconstruct and modify a segmentation mask at the class level. Also, we show our model can be put before a SIS generator, opening the way to a fully automatic generation control of both shape and texture. Code available at https://github.com/TFonta/Semantic-VAE.
Abstract:The ability to understand the surrounding scene is of paramount importance for Autonomous Vehicles (AVs). This paper presents a system capable to work in a real time guaranteed response times and online fashion, giving an immediate response to the arise of anomalies surrounding the AV, exploiting only the videos captured by a dash-mounted camera. Our architecture, called MOVAD, relies on two main modules: a short-term memory to extract information related to the ongoing action, implemented by a Video Swin Transformer adapted to work in an online scenario, and a long-term memory module that considers also remote past information thanks to the use of a Long-Short Term Memory (LSTM) network. We evaluated the performance of our method on Detection of Traffic Anomaly (DoTA) dataset, a challenging collection of dash-mounted camera videos of accidents. After an extensive ablation study, MOVAD is able to reach an AUC score of 82.11%, surpassing the current state-of-the-art by +2.81 AUC. Our code will be available on https://github.com/IMPLabUniPr/movad/tree/icip
Abstract:We present a framework, called MVG-NeRF, that combines classical Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction. NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable volumetric rendering formulation that enables high-quality and geometry-aware novel view synthesis. However, the underlying geometry of the scene is not explicitly constrained during training, thus leading to noisy and incorrect results when extracting a mesh with marching cubes. To this end, we propose to leverage pixelwise depths and normals from a classical 3D reconstruction pipeline as geometric priors to guide NeRF optimization. Such priors are used as pseudo-ground truth during training in order to improve the quality of the estimated underlying surface. Moreover, each pixel is weighted by a confidence value based on the forward-backward reprojection error for additional robustness. Experimental results on real-world data demonstrate the effectiveness of this approach in obtaining clean 3D meshes from images, while maintaining competitive performances in novel view synthesis.