Abstract:Parkinson's disease (PD) is a chronic and complex neurodegenerative disorder influenced by genetic, clinical, and lifestyle factors. Predicting this disease early is challenging because it depends on traditional diagnostic methods that face issues of subjectivity, which commonly delay diagnosis. Several objective analyses are currently in practice to help overcome the challenges of subjectivity; however, a proper explanation of these analyses is still lacking. While machine learning (ML) has demonstrated potential in supporting PD diagnosis, existing approaches often rely on subjective reports only and lack interpretability for individualized risk estimation. This study proposes SCOPE-PD, an explainable AI-based prediction framework, by integrating subjective and objective assessments to provide personalized health decisions. Subjective and objective clinical assessment data are collected from the Parkinson's Progression Markers Initiative (PPMI) study to construct a multimodal prediction framework. Several ML techniques are applied to these data, and the best ML model is selected to interpret the results. Model interpretability is examined using SHAP-based analysis. The Random Forest algorithm achieves the highest accuracy of 98.66 percent using combined features from both subjective and objective test data. Tremor, bradykinesia, and facial expression are identified as the top three contributing features from the MDS-UPDRS test in the prediction of PD.
Abstract:Gene expression analysis is a critical method for cancer classification, enabling precise diagnoses through the identification of unique molecular signatures associated with various tumors. Identifying cancer-specific genes from gene expression values enables a more tailored and personalized treatment approach. However, the high dimensionality of mRNA gene expression data poses challenges for analysis and data extraction. This research presents a comprehensive pipeline designed to accurately identify 33 distinct cancer types and their corresponding gene sets. It incorporates a combination of normalization and feature selection techniques to reduce dataset dimensionality effectively while ensuring high performance. Notably, our pipeline successfully identifies a substantial number of cancer-specific genes using a reduced feature set of just 500, in contrast to using the full dataset comprising 19,238 features. By employing an ensemble approach that combines three top-performing classifiers, a classification accuracy of 96.61% was achieved. Furthermore, we leverage Explainable AI to elucidate the biological significance of the identified cancer-specific genes, employing Differential Gene Expression (DGE) analysis.