Abstract:This paper presents the design and implementation of a Right Invariant Extended Kalman Filter (RIEKF) for estimating the states of the kinematic base of the Surena V humanoid robot. The state representation of the robot is defined on the Lie group $SE_4(3)$, encompassing the position, velocity, and orientation of the base, as well as the position of the left and right feet. In addition, we incorporated IMU biases as concatenated states within the filter. The prediction step of the RIEKF utilizes IMU equations, while the update step incorporates forward kinematics. To evaluate the performance of the RIEKF, we conducted experiments using the Choreonoid dynamic simulation framework and compared it against a Quaternion-based Extended Kalman Filter (QEKF). The results of the analysis demonstrate that the RIEKF exhibits reduced drift in localization and achieves estimation convergence in a shorter time compared to the QEKF. These findings highlight the effectiveness of the proposed RIEKF for accurate state estimation of the kinematic base in humanoid robotics.
Abstract:In this paper, previous works on the Model Predictive Control (MPC) and the Divergent Component of Motion (DCM) for bipedal walking control are extended. To this end, we employ a single MPC which uses a combination of Center of Pressure (CoP) manipulation, step adjustment, and Centroidal Moment Pivot (CMP) modulation to design a robust walking controller. Furthermore, we exploit the concept of time-varying DCM to generalize our walking controller for walking in uneven surfaces. Using our scheme, a general and robust walking controller is designed which can be implemented on robots with different control authorities, for walking on various environments, e.g. uneven terrains or surfaces with a very limited feasible area for stepping. The effectiveness of the proposed approach is verified through simulations on different scenarios and comparison to the state of the art.
Abstract:The three bio-inspired strategies that have been used for balance recovery of biped robots are the ankle, hip and stepping Strategies. However, there are several cases for a biped robot where stepping is not possible, e. g. when the available contact surfaces are limited. In this situation, the balance recovery by modulating the angular momentum of the upper body (Hip-strategy) or the Zero Moment Point (ZMP) (Ankle strategy) is essential. In this paper, a single Model Predictive Control (MPC) scheme is employed for controlling the Capture Point (CP) to a desired position by modulating both the ZMP and the Centroidal Moment Pivot (CMP). The goal of the proposed controller is to control the CP, employing the CMP when the CP is out of the support polygon, and/or the ZMP when the CP is inside the support polygon. The proposed algorithm is implemented on an abstract model of the SURENA III humanoid robot. Obtained results show the effectiveness of the proposed approach in the presence of severe pushes, even when the support polygon is shrunken to a point or a line.