In this paper, previous works on the Model Predictive Control (MPC) and the Divergent Component of Motion (DCM) for bipedal walking control are extended. To this end, we employ a single MPC which uses a combination of Center of Pressure (CoP) manipulation, step adjustment, and Centroidal Moment Pivot (CMP) modulation to design a robust walking controller. Furthermore, we exploit the concept of time-varying DCM to generalize our walking controller for walking in uneven surfaces. Using our scheme, a general and robust walking controller is designed which can be implemented on robots with different control authorities, for walking on various environments, e.g. uneven terrains or surfaces with a very limited feasible area for stepping. The effectiveness of the proposed approach is verified through simulations on different scenarios and comparison to the state of the art.