Abstract:Large pre-trained language models have become popular for many applications and form an important backbone of many downstream tasks in natural language processing (NLP). Applying 'explainable artificial intelligence' (XAI) techniques to enrich such models' outputs is considered crucial for assuring their quality and shedding light on their inner workings. However, large language models are trained on a plethora of data containing a variety of biases, such as gender biases, affecting model weights and, potentially, behavior. Currently, it is unclear to what extent such biases also impact model explanations in possibly unfavorable ways. We create a gender-controlled text dataset, GECO, in which otherwise identical sentences appear in male and female forms. This gives rise to ground-truth 'world explanations' for gender classification tasks, enabling the objective evaluation of the correctness of XAI methods. We also provide GECOBench, a rigorous quantitative evaluation framework benchmarking popular XAI methods, applying them to pre-trained language models fine-tuned to different degrees. This allows us to investigate how pre-training induces undesirable bias in model explanations and to what extent fine-tuning can mitigate such explanation bias. We show a clear dependency between explanation performance and the number of fine-tuned layers, where XAI methods are observed to particularly benefit from fine-tuning or complete retraining of embedding layers. Remarkably, this relationship holds for models achieving similar classification performance on the same task. With that, we highlight the utility of the proposed gender-controlled dataset and novel benchmarking approach for research and development of novel XAI methods. All code including dataset generation, model training, evaluation and visualization is available at: https://github.com/braindatalab/gecobench
Abstract:The evolving landscape of explainable artificial intelligence (XAI) aims to improve the interpretability of intricate machine learning (ML) models, yet faces challenges in formalisation and empirical validation, being an inherently unsupervised process. In this paper, we bring together various benchmark datasets and novel performance metrics in an initial benchmarking platform, the Explainable AI Comparison Toolkit (EXACT), providing a standardised foundation for evaluating XAI methods. Our datasets incorporate ground truth explanations for class-conditional features, and leveraging novel quantitative metrics, this platform assesses the performance of post-hoc XAI methods in the quality of the explanations they produce. Our recent findings have highlighted the limitations of popular XAI methods, as they often struggle to surpass random baselines, attributing significance to irrelevant features. Moreover, we show the variability in explanations derived from different equally performing model architectures. This initial benchmarking platform therefore aims to allow XAI researchers to test and assure the high quality of their newly developed methods.
Abstract:Convolutional Neural Networks (CNNs) are frequently and successfully used in medical prediction tasks. They are often used in combination with transfer learning, leading to improved performance when training data for the task are scarce. The resulting models are highly complex and typically do not provide any insight into their predictive mechanisms, motivating the field of 'explainable' artificial intelligence (XAI). However, previous studies have rarely quantitatively evaluated the 'explanation performance' of XAI methods against ground-truth data, and transfer learning and its influence on objective measures of explanation performance has not been investigated. Here, we propose a benchmark dataset that allows for quantifying explanation performance in a realistic magnetic resonance imaging (MRI) classification task. We employ this benchmark to understand the influence of transfer learning on the quality of explanations. Experimental results show that popular XAI methods applied to the same underlying model differ vastly in performance, even when considering only correctly classified examples. We further observe that explanation performance strongly depends on the task used for pre-training and the number of CNN layers pre-trained. These results hold after correcting for a substantial correlation between explanation and classification performance.