Abstract:High-quality, error-free datasets are a key ingredient in building reliable, accurate, and unbiased machine learning (ML) models. However, real world datasets often suffer from errors due to sensor malfunctions, data entry mistakes, or improper data integration across multiple sources that can severely degrade model performance. Detecting and correcting these issues typically require tailor-made solutions and demand extensive domain expertise. Consequently, automation is challenging, rendering the process labor-intensive and tedious. In this study, we investigate whether Large Language Models (LLMs) can help alleviate the burden of manual data cleaning. We set up an experiment in which an LLM, paired with Python, is tasked with cleaning the training dataset to improve the performance of a learning algorithm without having the ability to modify the training pipeline or perform any feature engineering. We run this experiment on multiple Kaggle datasets that have been intentionally corrupted with errors. Our results show that LLMs can identify and correct erroneous entries, such as illogical values or outlier, by leveraging contextual information from other features within the same row, as well as feedback from previous iterations. However, they struggle to detect more complex errors that require understanding data distribution across multiple rows, such as trends and biases.
Abstract:Large pre-trained language models have become popular for many applications and form an important backbone of many downstream tasks in natural language processing (NLP). Applying 'explainable artificial intelligence' (XAI) techniques to enrich such models' outputs is considered crucial for assuring their quality and shedding light on their inner workings. However, large language models are trained on a plethora of data containing a variety of biases, such as gender biases, affecting model weights and, potentially, behavior. Currently, it is unclear to what extent such biases also impact model explanations in possibly unfavorable ways. We create a gender-controlled text dataset, GECO, in which otherwise identical sentences appear in male and female forms. This gives rise to ground-truth 'world explanations' for gender classification tasks, enabling the objective evaluation of the correctness of XAI methods. We also provide GECOBench, a rigorous quantitative evaluation framework benchmarking popular XAI methods, applying them to pre-trained language models fine-tuned to different degrees. This allows us to investigate how pre-training induces undesirable bias in model explanations and to what extent fine-tuning can mitigate such explanation bias. We show a clear dependency between explanation performance and the number of fine-tuned layers, where XAI methods are observed to particularly benefit from fine-tuning or complete retraining of embedding layers. Remarkably, this relationship holds for models achieving similar classification performance on the same task. With that, we highlight the utility of the proposed gender-controlled dataset and novel benchmarking approach for research and development of novel XAI methods. All code including dataset generation, model training, evaluation and visualization is available at: https://github.com/braindatalab/gecobench
Abstract:The evolving landscape of explainable artificial intelligence (XAI) aims to improve the interpretability of intricate machine learning (ML) models, yet faces challenges in formalisation and empirical validation, being an inherently unsupervised process. In this paper, we bring together various benchmark datasets and novel performance metrics in an initial benchmarking platform, the Explainable AI Comparison Toolkit (EXACT), providing a standardised foundation for evaluating XAI methods. Our datasets incorporate ground truth explanations for class-conditional features, and leveraging novel quantitative metrics, this platform assesses the performance of post-hoc XAI methods in the quality of the explanations they produce. Our recent findings have highlighted the limitations of popular XAI methods, as they often struggle to surpass random baselines, attributing significance to irrelevant features. Moreover, we show the variability in explanations derived from different equally performing model architectures. This initial benchmarking platform therefore aims to allow XAI researchers to test and assure the high quality of their newly developed methods.