Abstract:In recent research, large language models (LLMs) have been increasingly used to investigate public opinions. This study investigates the algorithmic fidelity of LLMs, i.e., the ability to replicate the socio-cultural context and nuanced opinions of human participants. Using open-ended survey data from the German Longitudinal Election Studies (GLES), we prompt different LLMs to generate synthetic public opinions reflective of German subpopulations by incorporating demographic features into the persona prompts. Our results show that Llama performs better than other LLMs at representing subpopulations, particularly when there is lower opinion diversity within those groups. Our findings further reveal that the LLM performs better for supporters of left-leaning parties like The Greens and The Left compared to other parties, and matches the least with the right-party AfD. Additionally, the inclusion or exclusion of specific variables in the prompts can significantly impact the models' predictions. These findings underscore the importance of aligning LLMs to more effectively model diverse public opinions while minimizing political biases and enhancing robustness in representativeness.
Abstract:Advanced large language models like ChatGPT have gained considerable attention recently, including among students. However, while the debate on ChatGPT in academia is making waves, more understanding is needed among lecturers and teachers on how students use and perceive ChatGPT. To address this gap, we analyzed the content on ChatGPT available on TikTok in February 2023. TikTok is a rapidly growing social media platform popular among individuals under 30. Specifically, we analyzed the content of the 100 most popular videos in English tagged with #chatgpt, which collectively garnered over 250 million views. Most of the videos we studied promoted the use of ChatGPT for tasks like writing essays or code. In addition, many videos discussed AI detectors, with a focus on how other tools can help to transform ChatGPT output to fool these detectors. This also mirrors the discussion among educators on how to treat ChatGPT as lecturers and teachers in teaching and grading. What is, however, missing from the analyzed clips on TikTok are videos that discuss ChatGPT producing content that is nonsensical or unfaithful to the training data.