Abstract:Artificial intelligence (AI) systems power the world we live in. Deep neural networks (DNNs) are able to solve tasks in an ever-expanding landscape of scenarios, but our eagerness to apply these powerful models leads us to focus on their performance and deprioritises our ability to understand them. Current research in the field of explainable AI tries to bridge this gap by developing various perturbation or gradient-based explanation techniques. For images, these techniques fail to fully capture and convey the semantic information needed to elucidate why the model makes the predictions it does. In this work, we develop a new form of explanation that is radically different in nature from current explanation methods, such as Grad-CAM. Perception visualization provides a visual representation of what the DNN perceives in the input image by depicting what visual patterns the latent representation corresponds to. Visualizations are obtained through a reconstruction model that inverts the encoded features, such that the parameters and predictions of the original models are not modified. Results of our user study demonstrate that humans can better understand and predict the system's decisions when perception visualizations are available, thus easing the debugging and deployment of deep models as trusted systems.
Abstract:Deepfakes are computer manipulated videos where the face of an individual has been replaced with that of another. Software for creating such forgeries is easy to use and ever more popular, causing serious threats to personal reputation and public security. The quality of classifiers for detecting deepfakes has improved with the releasing of ever larger datasets, but the understanding of why a particular video has been labelled as fake has not kept pace. In this work we develop, extend and compare white-box, black-box and model-specific techniques for explaining the labelling of real and fake videos. In particular, we adapt SHAP, GradCAM and self-attention models to the task of explaining the predictions of state-of-the-art detectors based on EfficientNet, trained on the Deepfake Detection Challenge (DFDC) dataset. We compare the obtained explanations, proposing metrics to quantify their visual features and desirable characteristics, and also perform a user survey collecting users' opinions regarding the usefulness of the explainers.
Abstract:Automatic sarcasm detection is the task of predicting sarcasm in text. This is a crucial step to sentiment analysis, considering prevalence and challenges of sarcasm in sentiment-bearing text. Beginning with an approach that used speech-based features, sarcasm detection has witnessed great interest from the sentiment analysis community. This paper is the first known compilation of past work in automatic sarcasm detection. We observe three milestones in the research so far: semi-supervised pattern extraction to identify implicit sentiment, use of hashtag-based supervision, and use of context beyond target text. In this paper, we describe datasets, approaches, trends and issues in sarcasm detection. We also discuss representative performance values, shared tasks and pointers to future work, as given in prior works. In terms of resources that could be useful for understanding state-of-the-art, the survey presents several useful illustrations - most prominently, a table that summarizes past papers along different dimensions such as features, annotation techniques, data forms, etc.