Abstract:Sensitive information detection is crucial in content moderation to maintain safe online communities. Assisting in this traditionally manual process could relieve human moderators from overwhelming and tedious tasks, allowing them to focus solely on flagged content that may pose potential risks. Rapidly advancing large language models (LLMs) are known for their capability to understand and process natural language and so present a potential solution to support this process. This study explores the capabilities of five LLMs for detecting sensitive messages in the mental well-being domain within two online datasets and assesses their performance in terms of accuracy, precision, recall, F1 scores, and consistency. Our findings indicate that LLMs have the potential to be integrated into the moderation workflow as a convenient and precise detection tool. The best-performing model, GPT-4o, achieved an average accuracy of 99.5\% and an F1-score of 0.99. We discuss the advantages and potential challenges of using LLMs in the moderation workflow and suggest that future research should address the ethical considerations of utilising this technology.
Abstract:This paper explores enhancing empathy in Large Language Models (LLMs) by integrating them with physiological data. We propose a physiological computing approach that includes developing deep learning models that use physiological data for recognizing psychological states and integrating the predicted states with LLMs for empathic interaction. We showcase the application of this approach in an Empathic LLM (EmLLM) chatbot for stress monitoring and control. We also discuss the results of a pilot study that evaluates this EmLLM chatbot based on its ability to accurately predict user stress, provide human-like responses, and assess the therapeutic alliance with the user.
Abstract:Researchers have used machine learning approaches to identify motion sickness in VR experience. These approaches demand an accurately-labeled, real-world, and diverse dataset for high accuracy and generalizability. As a starting point to address this need, we introduce `VR.net', a dataset offering approximately 12-hour gameplay videos from ten real-world games in 10 diverse genres. For each video frame, a rich set of motion sickness-related labels, such as camera/object movement, depth field, and motion flow, are accurately assigned. Building such a dataset is challenging since manual labeling would require an infeasible amount of time. Instead, we utilize a tool to automatically and precisely extract ground truth data from 3D engines' rendering pipelines without accessing VR games' source code. We illustrate the utility of VR.net through several applications, such as risk factor detection and sickness level prediction. We continuously expand VR.net and envision its next version offering 10X more data than the current form. We believe that the scale, accuracy, and diversity of VR.net can offer unparalleled opportunities for VR motion sickness research and beyond.
Abstract:The integration of emotional intelligence in machines is an important step in advancing human-computer interaction. This demands the development of reliable end-to-end emotion recognition systems. However, the scarcity of public affective datasets presents a challenge. In this literature review, we emphasize the use of generative models to address this issue in neurophysiological signals, particularly Electroencephalogram (EEG) and Functional Near-Infrared Spectroscopy (fNIRS). We provide a comprehensive analysis of different generative models used in the field, examining their input formulation, deployment strategies, and methodologies for evaluating the quality of synthesized data. This review serves as a comprehensive overview, offering insights into the advantages, challenges, and promising future directions in the application of generative models in emotion recognition systems. Through this review, we aim to facilitate the progression of neurophysiological data augmentation, thereby supporting the development of more efficient and reliable emotion recognition systems.