Abstract:Graph learning plays a pivotal role and has gained significant attention in various application scenarios, from social network analysis to recommendation systems, for its effectiveness in modeling complex data relations represented by graph structural data. In reality, the real-world graph data typically show dynamics over time, with changing node attributes and edge structure, leading to the severe graph data distribution shift issue. This issue is compounded by the diverse and complex nature of distribution shifts, which can significantly impact the performance of graph learning methods in degraded generalization and adaptation capabilities, posing a substantial challenge to their effectiveness. In this survey, we provide a comprehensive review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning. Concretely, according to the observability of distributions in the inference stage and the availability of sufficient supervision information in the training stage, we categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning. For each scenario, a detailed taxonomy is proposed, with specific descriptions and discussions of existing progress made in distribution-shifted graph learning. Additionally, we discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field. The survey is positioned to provide general guidance for the development of effective graph learning algorithms in handling graph distribution shifts, and to stimulate future research and advancements in this area.
Abstract:Graph neural networks (GNNs) are important tools for transductive learning tasks, such as node classification in graphs, due to their expressive power in capturing complex interdependency between nodes. To enable graph neural network learning, existing works typically assume that labeled nodes, from two or multiple classes, are provided, so that a discriminative classifier can be learned from the labeled data. In reality, this assumption might be too restrictive for applications, as users may only provide labels of interest in a single class for a small number of nodes. In addition, most GNN models only aggregate information from short distances (e.g., 1-hop neighbors) in each round, and fail to capture long distance relationship in graphs. In this paper, we propose a novel graph neural network framework, long-short distance aggregation networks (LSDAN), to overcome these limitations. By generating multiple graphs at different distance levels, based on the adjacency matrix, we develop a long-short distance attention model to model these graphs. The direct neighbors are captured via a short-distance attention mechanism, and neighbors with long distance are captured by a long distance attention mechanism. Two novel risk estimators are further employed to aggregate long-short-distance networks, for PU learning and the loss is back-propagated for model learning. Experimental results on real-world datasets demonstrate the effectiveness of our algorithm.