Abstract:Code-switching (CS) is still a critical challenge in Natural Language Processing (NLP). Current Large Language Models (LLMs) struggle to interpret and generate code-switched text, primarily due to the scarcity of large-scale CS datasets for training. This paper presents a novel methodology to generate CS data using LLMs, and test it on the English-Spanish language pair. We propose back-translating natural CS sentences into monolingual English, and using the resulting parallel corpus to fine-tune LLMs to turn monolingual sentences into CS. Unlike previous approaches to CS generation, our methodology uses natural CS data as a starting point, allowing models to learn its natural distribution beyond grammatical patterns. We thoroughly analyse the models' performance through a study on human preferences, a qualitative error analysis and an evaluation with popular automatic metrics. Results show that our methodology generates fluent code-switched text, expanding research opportunities in CS communication, and that traditional metrics do not correlate with human judgement when assessing the quality of the generated CS data. We release our code and generated dataset under a CC-BY-NC-SA license.
Abstract:Code-switching (CS) remains a significant challenge in Natural Language Processing (NLP), mainly due a lack of relevant data. In the context of the contact between the Basque and Spanish languages in the north of the Iberian Peninsula, CS frequently occurs in both formal and informal spontaneous interactions. However, resources to analyse this phenomenon and support the development and evaluation of models capable of understanding and generating code-switched language for this language pair are almost non-existent. We introduce a first approach to develop a naturally sourced corpus for Basque-Spanish code-switching. Our methodology consists of identifying CS texts from previously available corpora using language identification models, which are then manually validated to obtain a reliable subset of CS instances. We present the properties of our corpus and make it available under the name Euska\~nolDS.
Abstract:In this paper we present our submission for the NorSID Shared Task as part of the 2025 VarDial Workshop (Scherrer et al., 2025), consisting of three tasks: Intent Detection, Slot Filling and Dialect Identification, evaluated using data in different dialects of the Norwegian language. For Intent Detection and Slot Filling, we have fine-tuned a multitask model in a cross-lingual setting, to leverage the xSID dataset available in 17 languages. In the case of Dialect Identification, our final submission consists of a model fine-tuned on the provided development set, which has obtained the highest scores within our experiments. Our final results on the test set show that our models do not drop in performance compared to the development set, likely due to the domain-specificity of the dataset and the similar distribution of both subsets. Finally, we also report an in-depth analysis of the provided datasets and their artifacts, as well as other sets of experiments that have been carried out but did not yield the best results. Additionally, we present an analysis on the reasons why some methods have been more successful than others; mainly the impact of the combination of languages and domain-specificity of the training data on the results.
Abstract:XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses.