Abstract:In recent years, deep learning using neural network architecture, i.e. deep neural networks, has been on the frontier of computer science research. It has even lead to superhuman performance in some problems, e.g., in computer vision, games and biology, and as a result the term deep learning revolution was coined. The undisputed success and rapid growth of deep learning suggests that, in future, it might become an enabler for Artificial General Intelligence (AGI). In this article, we approach this statement critically showing five major reasons of why deep neural networks, as of the current state, are not ready to be the technique of choice for reaching AGI.
Abstract:Crossover and mutation are the two main operators that lead to new solutions in evolutionary approaches. In this article, a new method of performing the crossover phase is presented. The problem of choice is evolutionary decision tree construction. The method aims at finding such individuals that together complement each other. Hence we say that they are diversely specialized. We propose the way of calculating the so-called complementary fitness. In several empirical experiments, we evaluate the efficacy of the method proposed in four variants and compare it to a fitness-rank-based approach. One variant emerges clearly as the best approach, whereas the remaining ones are below the baseline.
Abstract:Monte Carlo Tree Search (MCTS) is a powerful approach to designing game-playing bots or solving sequential decision problems. The method relies on intelligent tree search that balances exploration and exploitation. MCTS performs random sampling in the form of simulations and stores statistics of actions to make more educated choices in each subsequent iteration. The method has become a state-of-the-art technique for combinatorial games, however, in more complex games (e.g. those with high branching factor or real-time ones), as well as in various practical domains (e.g. transportation, scheduling or security) an efficient MCTS application often requires its problem-dependent modification or integration with other techniques. Such domain-specific modifications and hybrid approaches are the main focus of this survey. The last major MCTS survey has been published in 2012. Contributions that appeared since its release are of particular interest for this review.
Abstract:We investigate the impact of supervised prediction models on the strength and efficiency of artificial agents that use the Monte-Carlo Tree Search (MCTS) algorithm to play a popular video game Hearthstone: Heroes of Warcraft. We overview our custom implementation of the MCTS that is well-suited for games with partially hidden information and random effects. We also describe experiments which we designed to quantify the performance of our Hearthstone agent's decision making. We show that even simple neural networks can be trained and successfully used for the evaluation of game states. Moreover, we demonstrate that by providing a guidance to the game state search heuristic, it is possible to substantially improve the win rate, and at the same time reduce the required computations.
Abstract:This paper summarizes the AAIA'17 Data Mining Challenge: Helping AI to Play Hearthstone which was held between March 23, and May 15, 2017 at the Knowledge Pit platform. We briefly describe the scope and background of this competition in the context of a more general project related to the development of an AI engine for video games, called Grail. We also discuss the outcomes of this challenge and demonstrate how predictive models for the assessment of player's winning chances can be utilized in a construction of an intelligent agent for playing Hearthstone. Finally, we show a few selected machine learning approaches for modeling state and action values in Hearthstone. We provide evaluation for a few promising solutions that may be used to create more advanced types of agents, especially in conjunction with Monte Carlo Tree Search algorithms.