Abstract:Like any other useful technology, cryptocurrencies are sometimes used for criminal activities. While transactions are recorded on the blockchain, there exists a need for a more rapid and scalable method to detect addresses associated with fraudulent activities. We present RiskSEA, a scalable risk scoring system capable of effectively handling the dynamic nature of large-scale blockchain transaction graphs. The risk scoring system, which we implement for Ethereum, consists of 1. a scalable approach to generating node2vec embedding for entire set of addresses to capture the graph topology 2. transaction-based features to capture the transactional behavioral pattern of an address 3. a classifier model to generate risk score for addresses that combines the node2vec embedding and behavioral features. Efficiently generating node2vec embedding for large scale and dynamically evolving blockchain transaction graphs is challenging, we present two novel approaches for generating node2vec embeddings and effectively scaling it to the entire set of blockchain addresses: 1. node2vec embedding propagation and 2. dynamic node2vec embedding. We present a comprehensive analysis of the proposed approaches. Our experiments show that combining both behavioral and node2vec features boosts the classification performance significantly, and that the dynamic node2vec embeddings perform better than the node2vec propagated embeddings.
Abstract:This paper investigates covert communications in an integrated sensing and communications system, where a dual-functional base station (called Alice) covertly transmits signals to a covert user (called Bob) while sensing multiple targets, with one of them acting as a potential watcher (called Willie) and maliciously eavesdropping on legitimate communications. To shelter the covert communications, Alice transmits additional dual-functional artificial noise (DFAN) with a varying power not only to create uncertainty at Willie's signal reception to confuse Willie but also to sense the targets simultaneously. Based on this framework, the weighted sum of the sensing beampattern means square error (MSE) and cross correlation is minimized by jointly optimizing the covert communication and DFAN signals subject to the minimum covert rate requirement. The robust design considers both cases of imperfect Willie's CSI (WCSI) and statistical WCSI. Under the worst-case assumption that Willie can adaptively adjust the detection threshold to achieve the best detection performance, the minimum detection error probability (DEP) at Willie is analytically derived in the closed-form expression. The formulated covertness constrained optimization problems are tackled by a feasibility-checking based difference-of-convex relaxation (DC) algorithm utilizing the S-procedure, Bernstein-type inequality, and the DC method. Simulation results validate the feasibility of the proposed scheme and demonstrate the covertness performance gains achieved by our proposed design over various benchmarks.