UniCA, IUF
Abstract:Virtual environments provide a rich and controlled setting for collecting detailed data on human behavior, offering unique opportunities for predicting human trajectories in dynamic scenes. However, most existing approaches have overlooked the potential of these environments, focusing instead on static contexts without considering userspecific factors. Employing the CREATTIVE3D dataset, our work models trajectories recorded in virtual reality (VR) scenes for diverse situations including road-crossing tasks with user interactions and simulated visual impairments. We propose Diverse Context VR Human Motion Prediction (DiVR), a cross-modal transformer based on the Perceiver architecture that integrates both static and dynamic scene context using a heterogeneous graph convolution network. We conduct extensive experiments comparing DiVR against existing architectures including MLP, LSTM, and transformers with gaze and point cloud context. Additionally, we also stress test our model's generalizability across different users, tasks, and scenes. Results show that DiVR achieves higher accuracy and adaptability compared to other models and to static graphs. This work highlights the advantages of using VR datasets for context-aware human trajectory modeling, with potential applications in enhancing user experiences in the metaverse. Our source code is publicly available at https://gitlab.inria.fr/ffrancog/creattive3d-divr-model.
Abstract:In film gender studies, the concept of 'male gaze' refers to the way the characters are portrayed on-screen as objects of desire rather than subjects. In this article, we introduce a novel video-interpretation task, to detect character objectification in films. The purpose is to reveal and quantify the usage of complex temporal patterns operated in cinema to produce the cognitive perception of objectification. We introduce the ObyGaze12 dataset, made of 1914 movie clips densely annotated by experts for objectification concepts identified in film studies and psychology. We evaluate recent vision models, show the feasibility of the task and where the challenges remain with concept bottleneck models. Our new dataset and code are made available to the community.
Abstract:Head motion prediction is an important problem with 360\degree\ videos, in particular to inform the streaming decisions. Various methods tackling this problem with deep neural networks have been proposed recently. In this article we first show the startling result that all such existing methods, which attempt to benefit both from the history of past positions and knowledge of the video content, perform worse than a simple no-motion baseline. We then propose an LSTM-based architecture which processes the positional information only. It is able to establish state-of-the-art performance and we consider it our position-only baseline. Through a thorough root cause analysis, we first show that the content can indeed inform the head position prediction for horizons longer than 2 to 3s, the trajectory inertia being predominant earlier. We also identify that a sequence-to-sequence auto-regressive framework is crucial to improve the prediction accuracy over longer prediction windows, and that a dedicated recurrent network handling the time series of positions is necessary to reach the performance of the position-only baseline in the early prediction steps. This allows to make the most of the positional information and ground-truth saliency. Finally we show how the level of noise in the estimated saliency impacts the architecture's performance, and we propose a new architecture establishing state-of-the-art performance with estimated saliency, supporting its assets with an ablation study.