Abstract:In real-world scenario, many phenomena produce a collection of events that occur in continuous time. Point Processes provide a natural mathematical framework for modeling these sequences of events. In this survey, we investigate probabilistic models for modeling event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that characterize the literature on the topic. We define an ontology to categorize the existing approaches in terms of three families: simple, marked, and spatio-temporal point processes. For each family, we systematically review the existing approaches based based on deep learning. Finally, we analyze the scenarios where the proposed techniques can be used for addressing prediction and modeling aspects.
Abstract:This paper introduces and studies a declarative framework for updating views over indefinite databases. An indefinite database is a database with null values that are represented, following the standard database approach, by a single null constant. The paper formalizes views over such databases as indefinite deductive databases, and defines for them several classes of database repairs that realize view-update requests. Most notable is the class of constrained repairs. Constrained repairs change the database "minimally" and avoid making arbitrary commitments. They narrow down the space of alternative ways to fulfill the view-update request to those that are grounded, in a certain strong sense, in the database, the view and the view-update request.