Abstract:In this paper, we propose a novel reinforcement learning (RL) based path generation (RL-PG) approach for mobile robot navigation without a prior exploration of an unknown environment. Multiple predictive path points are dynamically generated by a deep Markov model optimized using RL approach for robot to track. To ensure the safety when tracking the predictive points, the robot's motion is fine-tuned by a motion fine-tuning module. Such an approach, using the deep Markov model with RL algorithm for planning, focuses on the relationship between adjacent path points. We analyze the benefits that our proposed approach are more effective and are with higher success rate than RL-Based approach DWA-RL and a traditional navigation approach APF. We deploy our model on both simulation and physical platforms and demonstrate our model performs robot navigation effectively and safely.
Abstract:Deep neural networks are susceptible to poisoning attacks by purposely polluted training data with specific triggers. As existing episodes mainly focused on attack success rate with patch-based samples, defense algorithms can easily detect these poisoning samples. We propose DeepPoison, a novel adversarial network of one generator and two discriminators, to address this problem. Specifically, the generator automatically extracts the target class' hidden features and embeds them into benign training samples. One discriminator controls the ratio of the poisoning perturbation. The other discriminator works as the target model to testify the poisoning effects. The novelty of DeepPoison lies in that the generated poisoned training samples are indistinguishable from the benign ones by both defensive methods and manual visual inspection, and even benign test samples can achieve the attack. Extensive experiments have shown that DeepPoison can achieve a state-of-the-art attack success rate, as high as 91.74%, with only 7% poisoned samples on publicly available datasets LFW and CASIA. Furthermore, we have experimented with high-performance defense algorithms such as autodecoder defense and DBSCAN cluster detection and showed the resilience of DeepPoison.