Abstract:Spiking neural networks (SNNs) have received widespread attention as an ultra-low energy computing paradigm. Recent studies have focused on improving the feature extraction capability of SNNs, but they suffer from inefficient inference and suboptimal performance. In this paper, we propose a simple yet effective temporal reversed training (TRT) method to optimize the spatio-temporal performance of SNNs and circumvent these problems. We perturb the input temporal data by temporal reversal, prompting the SNN to produce original-reversed consistent output logits and to learn perturbation-invariant representations. For static data without temporal dimension, we generalize this strategy by exploiting the inherent temporal property of spiking neurons for spike feature temporal reversal. In addition, we utilize the lightweight ``star operation" (element-wise multiplication) to hybridize the original and temporally reversed spike firing rates and expand the implicit dimensions, which serves as spatio-temporal regularization to further enhance the generalization of the SNN. Our method involves only an additional temporal reversal operation and element-wise multiplication during training, thus incurring negligible training overhead and not affecting the inference efficiency at all. Extensive experiments on static/neuromorphic object/action recognition, and 3D point cloud classification tasks demonstrate the effectiveness and generalizability of our method. In particular, with only two timesteps, our method achieves 74.77\% and 90.57\% accuracy on ImageNet and ModelNet40, respectively.
Abstract:Spiking neural networks (SNNs) transmit information via low-power binary spikes and have received widespread attention in areas such as computer vision and reinforcement learning. However, there have been very few explorations of SNNs in more practical industrial scenarios. In this paper, we focus on the application of SNNs in bearing fault diagnosis to facilitate the integration of high-performance AI algorithms and real-world industries. In particular, we identify two key limitations of existing SNN fault diagnosis methods: inadequate encoding capacity that necessitates cumbersome data preprocessing, and non-spike-oriented architectures that constrain the performance of SNNs. To alleviate these problems, we propose a Multi-scale Residual Attention SNN (MRA-SNN) to simultaneously improve the efficiency, performance, and robustness of SNN methods. By incorporating a lightweight attention mechanism, we have designed a multi-scale attention encoding module to extract multiscale fault features from vibration signals and encode them as spatio-temporal spikes, eliminating the need for complicated preprocessing. Then, the spike residual attention block extracts high-dimensional fault features and enhances the expressiveness of sparse spikes with the attention mechanism for end-to-end diagnosis. In addition, the performance and robustness of MRA-SNN is further enhanced by introducing the lightweight attention mechanism within the spiking neurons to simulate the biological dendritic filtering effect. Extensive experiments on MFPT and JNU benchmark datasets demonstrate that MRA-SNN significantly outperforms existing methods in terms of accuracy, energy consumption and noise robustness, and is more feasible for deployment in real-world industrial scenarios.
Abstract:Since proposed, spiking neural networks (SNNs) gain recognition for their high performance, low power consumption and enhanced biological interpretability. However, while bringing these advantages, the binary nature of spikes also leads to considerable information loss in SNNs, ultimately causing performance degradation. We claim that the limited expressiveness of current binary spikes, resulting in substantial information loss, is the fundamental issue behind these challenges. To alleviate this, our research introduces a multi-bit information transmission mechanism for SNNs. This mechanism expands the output of spiking neurons from the original single bit to multiple bits, enhancing the expressiveness of the spikes and reducing information loss during the forward process, while still maintaining the low energy consumption advantage of SNNs. For SNNs, this represents a new paradigm of information transmission. Moreover, to further utilize the limited spikes, we extract effective signals from the previous layer to re-stimulate the neurons, thus encouraging full spikes emission across various bit levels. We conducted extensive experiments with our proposed method using both direct training method and ANN-SNN conversion method, and the results show consistent performance improvements.
Abstract:Spiking neural networks (SNNs) have attracted considerable attention for their event-driven, low-power characteristics and high biological interpretability. Inspired by knowledge distillation (KD), recent research has improved the performance of the SNN model with a pre-trained teacher model. However, additional teacher models require significant computational resources, and it is tedious to manually define the appropriate teacher network architecture. In this paper, we explore cost-effective self-distillation learning of SNNs to circumvent these concerns. Without an explicit defined teacher, the SNN generates pseudo-labels and learns consistency during training. On the one hand, we extend the timestep of the SNN during training to create an implicit temporal ``teacher" that guides the learning of the original ``student", i.e., the temporal self-distillation. On the other hand, we guide the output of the weak classifier at the intermediate stage by the final output of the SNN, i.e., the spatial self-distillation. Our temporal-spatial self-distillation (TSSD) learning method does not introduce any inference overhead and has excellent generalization ability. Extensive experiments on the static image datasets CIFAR10/100 and ImageNet as well as the neuromorphic datasets CIFAR10-DVS and DVS-Gesture validate the superior performance of the TSSD method. This paper presents a novel manner of fusing SNNs with KD, providing insights into high-performance SNN learning methods.
Abstract:Neuromorphic object recognition with spiking neural networks (SNNs) is the cornerstone of low-power neuromorphic computing. However, existing SNNs suffer from significant latency, utilizing 10 to 40 timesteps or more, to recognize neuromorphic objects. At low latencies, the performance of existing SNNs is drastically degraded. In this work, we propose the Shrinking SNN (SSNN) to achieve low-latency neuromorphic object recognition without reducing performance. Concretely, we alleviate the temporal redundancy in SNNs by dividing SNNs into multiple stages with progressively shrinking timesteps, which significantly reduces the inference latency. During timestep shrinkage, the temporal transformer smoothly transforms the temporal scale and preserves the information maximally. Moreover, we add multiple early classifiers to the SNN during training to mitigate the mismatch between the surrogate gradient and the true gradient, as well as the gradient vanishing/exploding, thus eliminating the performance degradation at low latency. Extensive experiments on neuromorphic datasets, CIFAR10-DVS, N-Caltech101, and DVS-Gesture have revealed that SSNN is able to improve the baseline accuracy by 6.55% ~ 21.41%. With only 5 average timesteps and without any data augmentation, SSNN is able to achieve an accuracy of 73.63% on CIFAR10-DVS. This work presents a heterogeneous temporal scale SNN and provides valuable insights into the development of high-performance, low-latency SNNs.