Abstract:Since proposed, spiking neural networks (SNNs) gain recognition for their high performance, low power consumption and enhanced biological interpretability. However, while bringing these advantages, the binary nature of spikes also leads to considerable information loss in SNNs, ultimately causing performance degradation. We claim that the limited expressiveness of current binary spikes, resulting in substantial information loss, is the fundamental issue behind these challenges. To alleviate this, our research introduces a multi-bit information transmission mechanism for SNNs. This mechanism expands the output of spiking neurons from the original single bit to multiple bits, enhancing the expressiveness of the spikes and reducing information loss during the forward process, while still maintaining the low energy consumption advantage of SNNs. For SNNs, this represents a new paradigm of information transmission. Moreover, to further utilize the limited spikes, we extract effective signals from the previous layer to re-stimulate the neurons, thus encouraging full spikes emission across various bit levels. We conducted extensive experiments with our proposed method using both direct training method and ANN-SNN conversion method, and the results show consistent performance improvements.
Abstract:Neuromorphic object recognition with spiking neural networks (SNNs) is the cornerstone of low-power neuromorphic computing. However, existing SNNs suffer from significant latency, utilizing 10 to 40 timesteps or more, to recognize neuromorphic objects. At low latencies, the performance of existing SNNs is drastically degraded. In this work, we propose the Shrinking SNN (SSNN) to achieve low-latency neuromorphic object recognition without reducing performance. Concretely, we alleviate the temporal redundancy in SNNs by dividing SNNs into multiple stages with progressively shrinking timesteps, which significantly reduces the inference latency. During timestep shrinkage, the temporal transformer smoothly transforms the temporal scale and preserves the information maximally. Moreover, we add multiple early classifiers to the SNN during training to mitigate the mismatch between the surrogate gradient and the true gradient, as well as the gradient vanishing/exploding, thus eliminating the performance degradation at low latency. Extensive experiments on neuromorphic datasets, CIFAR10-DVS, N-Caltech101, and DVS-Gesture have revealed that SSNN is able to improve the baseline accuracy by 6.55% ~ 21.41%. With only 5 average timesteps and without any data augmentation, SSNN is able to achieve an accuracy of 73.63% on CIFAR10-DVS. This work presents a heterogeneous temporal scale SNN and provides valuable insights into the development of high-performance, low-latency SNNs.