Abstract:Large language models (LLMs) have been shown to propagate and amplify harmful stereotypes, particularly those that disproportionately affect marginalised communities. To understand the effect of these stereotypes more comprehensively, we introduce GlobalBias, a dataset of 876k sentences incorporating 40 distinct gender-by-ethnicity groups alongside descriptors typically used in bias literature, which enables us to study a broad set of stereotypes from around the world. We use GlobalBias to directly probe a suite of LMs via perplexity, which we use as a proxy to determine how certain stereotypes are represented in the model's internal representations. Following this, we generate character profiles based on given names and evaluate the prevalence of stereotypes in model outputs. We find that the demographic groups associated with various stereotypes remain consistent across model likelihoods and model outputs. Furthermore, larger models consistently display higher levels of stereotypical outputs, even when explicitly instructed not to.
Abstract:Network classification has a variety of applications, such as detecting communities within networks and finding similarities between those representing different aspects of the real world. However, most existing work in this area focus on examining static undirected networks without considering directed edges or temporality. In this paper, we propose a new methodology that utilizes feature representation for network classification based on the temporal motif distribution of the network and a null model for comparing against random graphs. Experimental results show that our method improves accuracy by up $10\%$ compared to the state-of-the-art embedding method in network classification, for tasks such as classifying network type, identifying communities in email exchange network, and identifying users given their app-switching behaviors.