Abstract:This work describes the task of metaphoric paraphrase generation, in which we are given a literal sentence and are charged with generating a metaphoric paraphrase. We propose two different models for this task: a lexical replacement baseline and a novel sequence to sequence model, 'metaphor masking', that generates free metaphoric paraphrases. We use crowdsourcing to evaluate our results, as well as developing an automatic metric for evaluating metaphoric paraphrases. We show that while the lexical replacement baseline is capable of producing accurate paraphrases, they often lack metaphoricity, while our metaphor masking model excels in generating metaphoric sentences while performing nearly as well with regard to fluency and paraphrase quality.
Abstract:We propose and evaluate several triplet CNN architectures for measuring the similarity between sketches and photographs, within the context of the sketch based image retrieval (SBIR) task. In contrast to recent fine-grained SBIR work, we study the ability of our networks to generalise across diverse object categories from limited training data, and explore in detail strategies for weight sharing, pre-processing, data augmentation and dimensionality reduction. We exceed the performance of pre-existing techniques on both the Flickr15k category level SBIR benchmark by $18\%$, and the TU-Berlin SBIR benchmark by $\sim10 \mathcal{T}_b$, when trained on the 250 category TU-Berlin classification dataset augmented with 25k corresponding photographs harvested from the Internet.