Abstract:Knowledge graph embeddings (KGEs) were originally developed to infer true but missing facts in incomplete knowledge repositories. In this paper, we link knowledge graph completion and counterfactual reasoning via our new task CFKGR. We model the original world state as a knowledge graph, hypothetical scenarios as edges added to the graph, and plausible changes to the graph as inferences from logical rules. We create corresponding benchmark datasets, which contain diverse hypothetical scenarios with plausible changes to the original knowledge graph and facts that should be retained. We develop COULDD, a general method for adapting existing knowledge graph embeddings given a hypothetical premise, and evaluate it on our benchmark. Our results indicate that KGEs learn patterns in the graph without explicit training. We further observe that KGEs adapted with COULDD solidly detect plausible counterfactual changes to the graph that follow these patterns. An evaluation on human-annotated data reveals that KGEs adapted with COULDD are mostly unable to recognize changes to the graph that do not follow learned inference rules. In contrast, ChatGPT mostly outperforms KGEs in detecting plausible changes to the graph but has poor knowledge retention. In summary, CFKGR connects two previously distinct areas, namely KG completion and counterfactual reasoning.
Abstract:An accurate and substantial dataset is essential for training a reliable and well-performing model. However, even manually annotated datasets contain label errors, not to mention automatically labeled ones. Previous methods for label denoising have primarily focused on detecting outliers and their permanent removal - a process that is likely to over- or underfilter the dataset. In this work, we propose AGRA: a new method for learning with noisy labels by using Adaptive GRAdient-based outlier removal. Instead of cleaning the dataset prior to model training, the dataset is dynamically adjusted during the training process. By comparing the aggregated gradient of a batch of samples and an individual example gradient, our method dynamically decides whether a corresponding example is helpful for the model at this point or is counter-productive and should be left out for the current update. Extensive evaluation on several datasets demonstrates AGRA's effectiveness, while a comprehensive results analysis supports our initial hypothesis: permanent hard outlier removal is not always what model benefits the most from.