Abstract:Supervisory signals can help topic models discover low-dimensional data representations that are more interpretable for clinical tasks. We propose a framework for training supervised latent Dirichlet allocation that balances two goals: faithful generative explanations of high-dimensional data and accurate prediction of associated class labels. Existing approaches fail to balance these goals by not properly handling a fundamental asymmetry: the intended task is always predicting labels from data, not data from labels. Our new prediction-constrained objective trains models that predict labels from heldout data well while also producing good generative likelihoods and interpretable topic-word parameters. In a case study on predicting depression medications from electronic health records, we demonstrate improved recommendations compared to previous supervised topic models and high- dimensional logistic regression from words alone.
Abstract:Supervisory signals have the potential to make low-dimensional data representations, like those learned by mixture and topic models, more interpretable and useful. We propose a framework for training latent variable models that explicitly balances two goals: recovery of faithful generative explanations of high-dimensional data, and accurate prediction of associated semantic labels. Existing approaches fail to achieve these goals due to an incomplete treatment of a fundamental asymmetry: the intended application is always predicting labels from data, not data from labels. Our prediction-constrained objective for training generative models coherently integrates loss-based supervisory signals while enabling effective semi-supervised learning from partially labeled data. We derive learning algorithms for semi-supervised mixture and topic models using stochastic gradient descent with automatic differentiation. We demonstrate improved prediction quality compared to several previous supervised topic models, achieving predictions competitive with high-dimensional logistic regression on text sentiment analysis and electronic health records tasks while simultaneously learning interpretable topics.