Abstract:We investigate the achievable rate (AR) of a stacked intelligent metasurface (SIM)-aided holographic multiple-input multiple-output (HMIMO) system by jointly optimizing the SIM phase shifts and power allocation. Contrary to earlier studies suggesting that the AR decreases when the number of metasurface layers increases past a certain point for \emph{a fixed SIM thickness}, our findings demonstrate consistent increase. To achieve this, we introduce two problem formulations: one based on directly maximizing the AR (RMax) and the other focused on minimizing inter-stream interference (IMin). To solve the RMax problem, we apply Riemannian manifold optimization (RMO) and weighted minimum mean square error (WMMSE) methods to optimize the SIM phase shifts and power allocation alternately. For the IMin problem, we derive an efficient algorithm that iteratively updates each meta-atom's phase shift using a closed-form expression while keeping others fixed. Our key contribution is integrating these two approaches, where the IMin solution initializes the SIM phase shifts in the first algorithm. This hybrid strategy enhances AR performance across varying numbers of metasurface layers. Simulation results demonstrate that the proposed algorithms outperform existing benchmarks. Most importantly, we show that increasing the number of metasurface layers while keeping the SIM thickness fixed leads to significant AR improvements.
Abstract:Reconfigurable intelligent surfaces (RISs) have huge potential to improve spectral and energy efficiency in future wireless systems at a minimal cost. However, early prototype results indicate that deploying hundreds or thousands of reflective elements is necessary for significant performance gains. Motivated by this, our study focuses on \emph{large-scale } RIS-assisted multi-user (MU) multiple-input multiple-output (MIMO) systems. In this context, we propose an efficient algorithm to jointly design the precoders at the base station (BS) and the phase shifts at the RIS to maximize the weighted sum rate (WSR). In particular, leveraging an equivalent lower-dimensional reformulation of the WSR maximization problem, we derive a closed-form solution to optimize the precoders using the successive convex approximation (SCA) framework. While the equivalent reformulation proves to be efficient for the precoder optimization, we offer numerical insights into why the original formulation of the WSR optimization problem is better suited for the phase shift optimization. Subsequently, we develop a scaled projected gradient method (SPGM) and a novel line search procedure to optimize RIS phase shifts. Notably, we show that the complexity of the proposed method \emph{scales linearly with the number of BS antennas and RIS reflective elements}. Extensive numerical experiments demonstrate that the proposed algorithm significantly reduces both time and computational complexity while achieving higher WSR compared to baseline algorithms.
Abstract:This paper investigates a wireless network consisting of an unmanned aerial vehicle (UAV) base station (BS), a fully-connected reconfigurable intelligent surface (FC-RIS), and multiple users, where the downlink signal can simultaneously be captured by an aerial eavesdropper at a random location. To improve the physical-layer security (PLS) of the considered downlink multiuser communications, we propose the fully-connected reconfigurable intelligent surface aided round-robin scheduling (FCR-RS) and the FC-RIS and ground channel state information (CSI) aided proportional fair scheduling (FCR-GCSI-PFS) schemes. Thereafter, we derive closed-form expressions of the zero secrecy rate probability (ZSRP). Numerical results not only validate the closed-form ZSRP analysis, but also verify that the proposed GCSI-PFS scheme obtains the same performance gain as the full-CSI-aided PFS in FC-RIS-aided communications. Furthermore, optimizing the hovering altitude remarkably enhances the PLS of the FC-RIS and UAV empowered multiuser communications.
Abstract:In the context of emerging stacked intelligent metasurface (SIM)-based holographic MIMO (HMIMO) systems, a fundamental problem is to study the mutual information (MI) between transmitted and received signals to establish their capacity. However, direct optimization or analytical evaluation of the MI, particularly for discrete signaling, is often intractable. To address this challenge, we adopt the channel cutoff rate (CR) as an alternative optimization metric for the MI maximization. In this regard, we propose an alternating projected gradient method (APGM), which optimizes the CR of a SIM-based HMIMO system by adjusting signal precoding and the phase shifts across the transmit and receive SIMs in a layer-by-layer basis. Simulation results indicate that the proposed algorithm significantly enhances the CR, achieving substantial gains proportional to those observed for the corresponding MI. This justifies the effectiveness of using the channel CR for the MI optimization. Moreover, we demonstrate that the integration of digital precoding, even on a modest scale, has a significant impact on the ultimate performance of SIM-aided systems.
Abstract:This paper studies cell-free massive multiple-input multiple-output (CF-mMIMO) systems incorporating simultaneous wireless information and power transfer (SWIPT) for separate information users (IUs) and energy users (EUs) in Internet of Things (IoT) networks. To optimize both the spectral efficiency (SE) of IUs and harvested energy (HE) of EUs, we propose a joint access point (AP) operation mode selection and power control design, wherein certain APs are designated for energy transmission to EUs, while others are dedicated to information transmission to IUs. We investigate the problem of maximizing the total HE for EUs, considering constraints on SE for individual IUs and minimum HE for individual EUs. Our numerical results showcase that the proposed AP operation mode selection algorithm can provide up to $76\%$ and $130\%$ performance gains over random AP operation mode selection with and without power control, respectively.
Abstract:The electromagnetic (EM) features of reconfigurable intelligent surfaces (RISs) fundamentally determine their operating principles and performance. Motivated by these considerations, we study a single-input single-output (SISO) system in the presence of an RIS, which is characterized by a circuit-based EM-compliant model. Specifically, we model the RIS as a collection of thin wire dipoles controlled by tunable load impedances, and we propose a gradient-based algorithm for calculating the optimal impedances of the scattering elements of the RIS in the presence of mutual coupling. Furthermore, we prove the convergence of the proposed algorithm and derive its computational complexity in terms of number of complex multiplications. Numerical results show that the proposed algorithm provides better performance than a benchmark algorithm and that it converges in a shorter amount of time.
Abstract:Integrated sensing and communication (ISAC) is expected to be offered as a fundamental service in the upcoming sixth-generation (6G) communications standard. However, due to the exposure of information-bearing signals to the sensing targets, ISAC poses unique security challenges. In recent years, intelligent reflecting surfaces (IRSs) have emerged as a novel hardware technology capable of enhancing the physical layer security of wireless communication systems. Therefore, in this paper, we consider the problem of transmit and reflective beamforming design in a secure IRS-enabled ISAC system to maximize the beampattern gain at the target. The formulated non-convex optimization problem is challenging to solve due to the intricate coupling between the design variables. Moreover, alternating optimization (AO) based methods are inefficient in finding a solution in such scenarios, and convergence to a stationary point is not theoretically guaranteed. Therefore, we propose a novel successive convex approximation (SCA)-based second-order cone programming (SOCP) scheme in which all of the design variables are updated simultaneously in each iteration. The proposed SCA-based method significantly outperforms a penalty-based benchmark scheme previously proposed in this context. Moreover, we also present a detailed complexity analysis of the proposed scheme, and show that despite having slightly higher per-iteration complexity than the benchmark approach the average problem-solving time of the proposed method is notably lower than that of the benchmark scheme.
Abstract:This paper focuses on the fundamental problem of maximizing the achievable weighted sum rate (WSR) at information receivers (IRs) in an intelligent reflecting surface (IRS) assisted simultaneous wireless information and power transfer system under a multiple-input multiple-output (SWIPT-MIMO) setting, subject to a quality-of-service (QoS) constraint at the energy receivers (ERs). Notably, due to the coupling between the transmit precoding matrix and the passive beamforming vector in the QoS constraint, the formulated non-convex optimization problem is challenging to solve. We first decouple the design variables in the constraints following a penalty dual decomposition method, and then apply an alternating gradient projection algorithm to achieve a stationary solution to the reformulated optimization problem. The proposed algorithm nearly doubles the WSR compared to that achieved by a block-coordinate descent (BCD) based benchmark scheme. At the same time, the complexity of the proposed scheme grows linearly with the number of IRS elements while that of the benchmark scheme is proportional to the cube of the number of IRS elements.
Abstract:Cell-free massive MIMO is a promising technology for beyond-5G networks. Through the deployment of many cooperating access points (AP), the technology can significantly enhance user coverage and spectral efficiency compared to traditional cellular systems. Since the APs are distributed over a large area, the level of favorable propagation in cell-free massive MIMO is less than the one in colocated massive MIMO. As a result, the current linear processing schemes are not close to the optimal ones when the number of AP antennas is not very large. The aim of this paper is to develop nonlinear variational Bayes (VB) methods for data detection in cell-free massive MIMO systems. Contrary to existing work in the literature, which only attained point estimates of the transmit data symbols, the proposed methods aim to obtain the posterior distribution and the Bayes estimate of the data symbols. We develop the VB methods accordingly to the levels of cooperation among the APs. Simulation results show significant performance advantages of the developed VB methods over the linear processing techniques.
Abstract:We consider the problem of max-min fairness for uplink cell-free massive multiple-input multiple-output (MIMO) subject to per-user power constraints. The standard framework for solving the considered problem is to separately solve two subproblems: the receiver filter coefficient design and the power control problem. While the former has a closed-form solution, the latter has been solved using either second-order methods of high computational complexity or a first-order method that provides an approximate solution. To deal with these drawbacks of the existing methods, we propose a mirror prox based method for the power control problem by equivalently reformulating it as a convex-concave problem and applying the mirror prox algorithm to find a saddle point. The simulation results establish the optimality of the proposed solution and demonstrate that it is more efficient than the known methods. We also conclude that for large-scale cell-free massive MIMO, joint optimization of linear receive combining and power control provides significantly better user fairness than the power control only scheme in which receiver coefficients are fixed to unity.