Abstract:We present an overview of ongoing research endeavors focused on in-band full-duplex (IBFD) massive multiple-input multiple-output (MIMO) systems and their applications. In response to the unprecedented demands for mobile traffic in concurrent and upcoming wireless networks, a paradigm shift from conventional cellular networks to distributed communication systems becomes imperative. Cell-free massive MIMO (CF-mMIMO) emerges as a practical and scalable implementation of distributed/network MIMO systems, serving as a crucial physical layer technology for the advancement of next-generation wireless networks. This architecture inherits benefits from co-located massive MIMO and distributed systems and provides the flexibility for integration with the IBFD technology. We delineate the evolutionary trajectory of cellular networks, transitioning from conventional half-duplex multi-user MIMO networks to IBFD CF-mMIMO. The discussion extends further to the emerging paradigm of network-assisted IBFD CF-mMIMO (NAFD CF-mMIMO), serving as an energy-efficient prototype for asymmetric uplink and downlink communication services. This novel approach finds applications in dual-functionality scenarios, including simultaneous wireless power and information transmission, wireless surveillance, and integrated sensing and communications. We highlight various current use case applications, discuss open challenges, and outline future research directions aimed at fully realizing the potential of NAFD CF-mMIMO systems to meet the evolving demands of future wireless networks.
Abstract:This paper explores a discrete energy state transition model for energy harvesting (EH) in cell-free massive multiple-input multiple-output (CF-mMIMO) networks. Multiple-antenna access points (APs) provide wireless power and information to single-antenna UE equipment (UEs). The harvested energy at the UEs is used for both uplink (UL) training and data transmission. We investigate the energy transition probabilities based on the energy differential achieved in each coherence interval. A Markov chain-based stochastic process is introduced to characterize the evolving UE energy status. A detailed statistical model is developed for a non-linear EH circuit at the UEs, using the derived closed-form expressions for the mean and variance of the harvested energy. More specifically, simulation results confirm that the proposed Gamma distribution approximation can accurately capture the statistical behavior of the harvested energy. Furthermore, the energy state transitions are evaluated using the proposed Markov chain-based framework, while mathematical expressions for the self, positive and negative transition probabilities of the discrete energy states are also presented. Our numerical results depict that increasing the number of APs with a constant number of service antennas provides significant improvement in the positive energy state transition and reduces the negative transition probabilities of the overall network.
Abstract:We consider a downlink (DL) massive multiple-input multiple-output (MIMO) system, where different users have different mobility profiles. To support this system, we categorize the users into two disjoint groups according to their mobility profile and implement a hybrid orthogonal time frequency space (OTFS)/orthogonal frequency division multiplexing (OFDM) modulation scheme. Building upon this framework, two precoding designs, namely full-pilot zero-forcing (FZF) precoding and partial zero-forcing (PZF) precoding are considered. To shed light on the system performance, the spectral efficiency (SE) with a minimum-mean-square-error (MMSE)-successive interference cancellation (SIC) detector is investigated. Closed-form expressions for the SE are obtained using some tight mathematical approximations. To improve fairness among different users, we consider max-min power control for both precoding schemes based on the closed-form SE expression. However, by noting the large performance gap for different groups of users with PZF precoding, the per-user SE will be compromised when pursuing overall fairness. Therefore, we propose a weighted max-min power control scheme. By introducing a weighting coefficient, the trade-off between the per-user performance and fairness can be enhanced. Our numerical results confirm the theoretical analysis and reveal that with mobility-based grouping, the proposed hybrid OTFS/OFDM modulation significantly outperforms the conventional OFDM modulation for high-mobility users.
Abstract:To meet the unprecedented mobile traffic demands of future wireless networks, a paradigm shift from conventional cellular networks to distributed communication systems is imperative. Cell-free massive multiple-input multiple-output (CF-mMIMO) represents a practical and scalable embodiment of distributed/network MIMO systems. It inherits not only the key benefits of co-located massive MIMO systems but also the macro-diversity gains from distributed systems. This innovative architecture has demonstrated significant potential in enhancing network performance from various perspectives, outperforming co-located mMIMO and conventional small-cell systems. Moreover, CF-mMIMO offers flexibility in integration with emerging wireless technologies such as full-duplex (FD), non-orthogonal transmission schemes, millimeter-wave (mmWave) communications, ultra-reliable low-latency communication (URLLC), unmanned aerial vehicle (UAV)-aided communication, and reconfigurable intelligent surfaces (RISs). In this paper, we provide an overview of current research efforts on CF-mMIMO systems and their promising future application scenarios. We then elaborate on new requirements for CF-mMIMO networks in the context of these technological breakthroughs. We also present several current open challenges and outline future research directions aimed at fully realizing the potential of CF mMIMO systems in meeting the evolving demands of future wireless networks.
Abstract:We propose a distributed implementation for integrated sensing and communication (ISAC) backed by a massive multiple input multiple output (CF-mMIMO) architecture without cells. Distributed multi-antenna access points (APs) simultaneously serve communication users (UEs) and emit probing signals towards multiple specified zones for sensing. The APs can switch between communication and sensing modes, and adjust their transmit power based on the network settings and sensing and communication operations' requirements. By considering local partial zero-forcing and maximum-ratio-transmit precoding at the APs for communication and sensing, respectively, we first derive closed-form expressions for the spectral efficiency (SE) of the UEs and the mainlobe-to-average-sidelobe ratio (MASR) of the sensing zones. Then, a joint operation mode selection and power control design problem is formulated to maximize the SE fairness among the UEs, while ensuring specific levels of MASR for sensing zones. The complicated mixed-integer problem is relaxed and solved via successive convex approximation approach. We further propose a low-complexity design, where AP mode selection is designed through a greedy algorithm and then power control is designed based on this chosen mode. Our findings reveal that the proposed scheme can consistently ensure a sensing success rate of $100\%$ for different network setups with a satisfactory fairness among all UEs.
Abstract:This paper investigates the integration of beyond-diagonal reconfigurable intelligent surfaces (BD-RISs) into cell-free massive multiple-input multiple-output (CF-mMIMO) systems, focusing on applications involving simultaneous wireless information and power transfer (SWIPT). The system supports concurrently two user groups: information users (IUs) and energy users (EUs). A BD-RIS is employed to enhance the wireless power transfer (WPT) directed towards the EUs. To comprehensively evaluate the system's performance, we present an analytical framework for the spectral efficiency (SE) of IUs and the average harvested energy (HE) of EUs in the presence of spatial correlation among the BD-RIS elements and for a non-linear energy harvesting circuit. Our findings offer important insights into the transformative potential of BD-RIS, setting the stage for the development of more efficient and effective SWIPT networks. Finally, incorporating a heuristic scattering matrix design at the BD-RIS results in a substantial improvement compared to the scenario with random scattering matrix design.
Abstract:This paper studies the coexistence between a downlink multiuser massive multi-input-multi-output (MIMO) communication system and MIMO radar. The performance of the massive MIMO system with maximum ratio ($\MR$), zero-forcing ($\ZF$), and protective $\ZF$ ($\PZF$) precoding designs is characterized in terms of spectral efficiency (SE) and by taking the channel estimation errors and power control into account. The idea of $\PZF$ precoding relies on the projection of the information-bearing signal onto the null space of the radar channel to protect the radar against communication signals. We further derive closed-form expressions for the detection probability of the radar system for the considered precoding designs. By leveraging the closed-form expressions for the SE and detection probability, we formulate a power control problem at the radar and base station (BS) to maximize the detection probability while satisfying the per-user SE requirements. This optimization problem can be efficiently tackled via the bisection method by solving a linear feasibility problem. Our analysis and simulations show that the $\PZF$ design has the highest detection probability performance among all designs, with intermediate SE performance compared to the other two designs. Moreover, by optimally selecting the power control coefficients at the BS and radar, the detection probability improves significantly.
Abstract:This paper considers a cell-free massive multipleinput multiple-output (MIMO) integrated sensing and communication (ISAC) system, where distributed MIMO access points (APs) are used to jointly serve the communication users and detect the presence of a single target. We investigate the problem of AP operation mode selection, wherein some APs are dedicated for downlink communication, while the remaining APs are used for sensing purposes. Closed-form expressions for the individual spectral efficiency (SE) and mainlobe-to-average-sidelobe ratio (MASR) are derived, which are respectively utilized to assess the communication and sensing performances. Accordingly, a maxmin fairness problem is formulated and solved, where the minimum SE of the users is maximized, subject to the per-AP power constraints as well as sensing MASR constraint. Our numerical results show that the proposed AP operation mode selection with power control can significantly improve the communication performance for given sensing requirements.
Abstract:This paper studies cell-free massive multiple-input multiple-output (CF-mMIMO) systems incorporating simultaneous wireless information and power transfer (SWIPT) for separate information users (IUs) and energy users (EUs) in Internet of Things (IoT) networks. To optimize both the spectral efficiency (SE) of IUs and harvested energy (HE) of EUs, we propose a joint access point (AP) operation mode selection and power control design, wherein certain APs are designated for energy transmission to EUs, while others are dedicated to information transmission to IUs. We investigate the problem of maximizing the total HE for EUs, considering constraints on SE for individual IUs and minimum HE for individual EUs. Our numerical results showcase that the proposed AP operation mode selection algorithm can provide up to $76\%$ and $130\%$ performance gains over random AP operation mode selection with and without power control, respectively.