Abstract:We propose a distributed implementation for integrated sensing and communication (ISAC) backed by a massive multiple input multiple output (CF-mMIMO) architecture without cells. Distributed multi-antenna access points (APs) simultaneously serve communication users (UEs) and emit probing signals towards multiple specified zones for sensing. The APs can switch between communication and sensing modes, and adjust their transmit power based on the network settings and sensing and communication operations' requirements. By considering local partial zero-forcing and maximum-ratio-transmit precoding at the APs for communication and sensing, respectively, we first derive closed-form expressions for the spectral efficiency (SE) of the UEs and the mainlobe-to-average-sidelobe ratio (MASR) of the sensing zones. Then, a joint operation mode selection and power control design problem is formulated to maximize the SE fairness among the UEs, while ensuring specific levels of MASR for sensing zones. The complicated mixed-integer problem is relaxed and solved via successive convex approximation approach. We further propose a low-complexity design, where AP mode selection is designed through a greedy algorithm and then power control is designed based on this chosen mode. Our findings reveal that the proposed scheme can consistently ensure a sensing success rate of $100\%$ for different network setups with a satisfactory fairness among all UEs.
Abstract:This paper studies the coexistence between a downlink multiuser massive multi-input-multi-output (MIMO) communication system and MIMO radar. The performance of the massive MIMO system with maximum ratio ($\MR$), zero-forcing ($\ZF$), and protective $\ZF$ ($\PZF$) precoding designs is characterized in terms of spectral efficiency (SE) and by taking the channel estimation errors and power control into account. The idea of $\PZF$ precoding relies on the projection of the information-bearing signal onto the null space of the radar channel to protect the radar against communication signals. We further derive closed-form expressions for the detection probability of the radar system for the considered precoding designs. By leveraging the closed-form expressions for the SE and detection probability, we formulate a power control problem at the radar and base station (BS) to maximize the detection probability while satisfying the per-user SE requirements. This optimization problem can be efficiently tackled via the bisection method by solving a linear feasibility problem. Our analysis and simulations show that the $\PZF$ design has the highest detection probability performance among all designs, with intermediate SE performance compared to the other two designs. Moreover, by optimally selecting the power control coefficients at the BS and radar, the detection probability improves significantly.
Abstract:This paper considers a cell-free massive multipleinput multiple-output (MIMO) integrated sensing and communication (ISAC) system, where distributed MIMO access points (APs) are used to jointly serve the communication users and detect the presence of a single target. We investigate the problem of AP operation mode selection, wherein some APs are dedicated for downlink communication, while the remaining APs are used for sensing purposes. Closed-form expressions for the individual spectral efficiency (SE) and mainlobe-to-average-sidelobe ratio (MASR) are derived, which are respectively utilized to assess the communication and sensing performances. Accordingly, a maxmin fairness problem is formulated and solved, where the minimum SE of the users is maximized, subject to the per-AP power constraints as well as sensing MASR constraint. Our numerical results show that the proposed AP operation mode selection with power control can significantly improve the communication performance for given sensing requirements.