Abstract:Reinforcement learning (RL) can transform power grid operations by providing adaptive and scalable controllers essential for grid decarbonization. However, existing methods struggle with the complex dynamics, aleatoric uncertainty, long-horizon goals, and hard physical constraints that occur in real-world systems. This paper presents RL2Grid, a benchmark designed in collaboration with power system operators to accelerate progress in grid control and foster RL maturity. Built on a power simulation framework developed by RTE France, RL2Grid standardizes tasks, state and action spaces, and reward structures within a unified interface for a systematic evaluation and comparison of RL approaches. Moreover, we integrate real control heuristics and safety constraints informed by the operators' expertise to ensure RL2Grid aligns with grid operation requirements. We benchmark popular RL baselines on the grid control tasks represented within RL2Grid, establishing reference performance metrics. Our results and discussion highlight the challenges that power grids pose for RL methods, emphasizing the need for novel algorithms capable of handling real-world physical systems.
Abstract:Machine Learning (ML) models have become a very powerful tool to extract information from large datasets and use it to make accurate predictions and automated decisions. However, ML models can be vulnerable to external attacks, causing them to underperform or deviate from their expected tasks. One way to attack ML models is by injecting malicious data to mislead the algorithm during the training phase, which is referred to as a poisoning attack. We can prepare for such situations by designing anticipated attacks, which are later used for creating and testing defence strategies. In this paper, we propose an algorithm to generate strong poisoning attacks for a ridge regression model containing both numerical and categorical features that explicitly models and poisons categorical features. We model categorical features as SOS-1 sets and formulate the problem of designing poisoning attacks as a bilevel optimization problem that is nonconvex mixed-integer in the upper-level and unconstrained convex quadratic in the lower-level. We present the mathematical formulation of the problem, introduce a single-level reformulation based on the Karush-Kuhn-Tucker (KKT) conditions of the lower level, find bounds for the lower-level variables to accelerate solver performance, and propose a new algorithm to poison categorical features. Numerical experiments show that our method improves the mean squared error of all datasets compared to the previous benchmark in the literature.