MAGI
Abstract:Machine Learning (ML) models have become a very powerful tool to extract information from large datasets and use it to make accurate predictions and automated decisions. However, ML models can be vulnerable to external attacks, causing them to underperform or deviate from their expected tasks. One way to attack ML models is by injecting malicious data to mislead the algorithm during the training phase, which is referred to as a poisoning attack. We can prepare for such situations by designing anticipated attacks, which are later used for creating and testing defence strategies. In this paper, we propose an algorithm to generate strong poisoning attacks for a ridge regression model containing both numerical and categorical features that explicitly models and poisons categorical features. We model categorical features as SOS-1 sets and formulate the problem of designing poisoning attacks as a bilevel optimization problem that is nonconvex mixed-integer in the upper-level and unconstrained convex quadratic in the lower-level. We present the mathematical formulation of the problem, introduce a single-level reformulation based on the Karush-Kuhn-Tucker (KKT) conditions of the lower level, find bounds for the lower-level variables to accelerate solver performance, and propose a new algorithm to poison categorical features. Numerical experiments show that our method improves the mean squared error of all datasets compared to the previous benchmark in the literature.
Abstract:The Reactive Optimal Power Flow (ROPF) problem consists in computing an optimal power generation dispatch for an alternating current transmission network that respects power flow equations and operational constraints. Some means of action on the voltage are modelled in the ROPF problem such as the possible activation of shunts, which implies discrete variables. The ROPF problem belongs to the class of nonconvex MINLPs (Mixed-Integer Nonlinear Problems), which are NP-hard problems. In this paper, we solve three new variants of the ROPF problem by using a semidefinite optimization-based Branch-and-Bound algorithm. We present results on MATPOWER instances and we show that this method can solve to global optimality most instances. On the instances not solved to optimality, our algorithm is able to find solutions with a value better than the ones obtained by a rounding algorithm. We also demonstrate that applying an appropriate clique merging algorithm can significantly speed up the resolution of semidefinite relaxations of ROPF large instances.
Abstract:Semidefinite Programming (SDP) provides tight lower bounds for Optimal Power Flow problems. However, solving large-scale SDP problems requires exploiting sparsity. In this paper, we experiment several clique decomposition algorithms that lead to different reformulations and we show that the resolution is highly sensitive to the clique decomposition procedure. Our main contribution is to demonstrate that minimizing the number of additional edges in the chordal extension is not always appropriate to get a good clique decomposition.