Abstract:Mobile robots are being used on a large scale in various crowded situations and become part of our society. The socially acceptable navigation behavior of a mobile robot with individual human consideration is an essential requirement for scalable applications and human acceptance. Deep Reinforcement Learning (DRL) approaches are recently used to learn a robot's navigation policy and to model the complex interactions between robots and humans. We propose to divide existing DRL-based navigation approaches based on the robot's exhibited social behavior and distinguish between social collision avoidance with a lack of social behavior and socially aware approaches with explicit predefined social behavior. In addition, we propose a novel socially integrated navigation approach where the robot's social behavior is adaptive and emerges from the interaction with humans. The formulation of our approach is derived from a sociological definition, which states that social acting is oriented toward the acting of others. The DRL policy is trained in an environment where other agents interact socially integrated and reward the robot's behavior individually. The simulation results indicate that the proposed socially integrated navigation approach outperforms a socially aware approach in terms of distance traveled, time to completion, and negative impact on all agents within the environment.
Abstract:Modern cyber-physical systems (CPS), such as our energy infrastructure, are becoming increasingly complex: An ever-higher share of Artificial Intelligence (AI)-based technologies use the Information and Communication Technology (ICT) facet of energy systems for operation optimization, cost efficiency, and to reach CO2 goals worldwide. At the same time, markets with increased flexibility and ever shorter trade horizons enable the multi-stakeholder situation that is emerging in this setting. These systems still form critical infrastructures that need to perform with highest reliability. However, today's CPS are becoming too complex to be analyzed in the traditional monolithic approach, where each domain, e.g., power grid and ICT as well as the energy market, are considered as separate entities while ignoring dependencies and side-effects. To achieve an overall analysis, we introduce the concept for an application of distributed artificial intelligence as a self-adaptive analysis tool that is able to analyze the dependencies between domains in CPS by attacking them. It eschews pre-configured domain knowledge, instead exploring the CPS domains for emergent risk situations and exploitable loopholes in codices, with a focus on rational market actors that exploit the system while still following the market rules.
Abstract:Principles of modern cyber-physical system (CPS) analysis are based on analytical methods that depend on whether safety or liveness requirements are considered. Complexity is abstracted through different techniques, ranging from stochastic modelling to contracts. However, both distributed heuristics and Artificial Intelligence (AI)-based approaches as well as the user perspective or unpredictable effects, such as accidents or the weather, introduce enough uncertainty to warrant reinforcement-learning-based approaches. This paper compares traditional approaches in the domain of CPS modelling and analysis with the AI researcher perspective to exploring unknown complex systems.
Abstract:This paper introduces Adversarial Resilience Learning (ARL), a concept to model, train, and analyze artificial neural networks as representations of competitive agents in highly complex systems. In our examples, the agents normally take the roles of attackers or defenders that aim at worsening or improving-or keeping, respectively-defined performance indicators of the system. Our concept provides adaptive, repeatable, actor-based testing with a chance of detecting previously unknown attack vectors. We provide the constitutive nomenclature of ARL and, based on it, the description of experimental setups and results of a preliminary implementation of ARL in simulated power systems.