Abstract:In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU). We evaluate these recurrent units on the tasks of polyphonic music modeling and speech signal modeling. Our experiments revealed that these advanced recurrent units are indeed better than more traditional recurrent units such as tanh units. Also, we found GRU to be comparable to LSTM.
Abstract:Neural language models learn word representations that capture rich linguistic and conceptual information. Here we investigate the embeddings learned by neural machine translation models. We show that translation-based embeddings outperform those learned by cutting-edge monolingual models at single-language tasks requiring knowledge of conceptual similarity and/or syntactic role. The findings suggest that, while monolingual models learn information about how concepts are related, neural-translation models better capture their true ontological status.