Abstract:Implicit knowledge hidden within the explicit table cells, such as data insights, is the key to generating a high-quality table summary. However, unveiling such implicit knowledge is a non-trivial task. Due to the complex nature of structured tables, it is challenging even for large language models (LLMs) to mine the implicit knowledge in an insightful and faithful manner. To address this challenge, we propose a novel table reasoning framework Question-then-Pinpoint. Our work focuses on building a plug-and-play table reasoner that can self-question the insightful knowledge and answer it by faithfully pinpointing evidence on the table to provide explainable guidance for the summarizer. To train a reliable reasoner, we collect table knowledge by guiding a teacher LLM to follow the coarse-to-fine reasoning paths and refine it through two quality enhancement strategies to selectively distill the high-quality knowledge to the reasoner. Extensive experiments on two table summarization datasets, including our newly proposed InsTaSumm, validate the general effectiveness of our framework.
Abstract:Recent approaches in domain-specific named entity recognition (NER), such as biomedical NER, have shown remarkable advances. However, they still lack of faithfulness, producing erroneous predictions. We assume that knowledge of entities can be useful in verifying the correctness of the predictions. Despite the usefulness of knowledge, resolving such errors with knowledge is nontrivial, since the knowledge itself does not directly indicate the ground-truth label. To this end, we propose VerifiNER, a post-hoc verification framework that identifies errors from existing NER methods using knowledge and revises them into more faithful predictions. Our framework leverages the reasoning abilities of large language models to adequately ground on knowledge and the contextual information in the verification process. We validate effectiveness of VerifiNER through extensive experiments on biomedical datasets. The results suggest that VerifiNER can successfully verify errors from existing models as a model-agnostic approach. Further analyses on out-of-domain and low-resource settings show the usefulness of VerifiNER on real-world applications.