Abstract:We focus on the problem of Unsupervised Domain Adaptation (\uda) for breast cancer detection from mammograms (BCDM) problem. Recent advancements have shown that masked image modeling serves as a robust pretext task for UDA. However, when applied to cross-domain BCDM, these techniques struggle with breast abnormalities such as masses, asymmetries, and micro-calcifications, in part due to the typically much smaller size of region of interest in comparison to natural images. This often results in more false positives per image (FPI) and significant noise in pseudo-labels typically used to bootstrap such techniques. Recognizing these challenges, we introduce a transformer-based Domain-invariant Mask Annealed Student Teacher autoencoder (D-MASTER) framework. D-MASTER adaptively masks and reconstructs multi-scale feature maps, enhancing the model's ability to capture reliable target domain features. D-MASTER also includes adaptive confidence refinement to filter pseudo-labels, ensuring only high-quality detections are considered. We also provide a bounding box annotated subset of 1000 mammograms from the RSNA Breast Screening Dataset (referred to as RSNA-BSD1K) to support further research in BCDM. We evaluate D-MASTER on multiple BCDM datasets acquired from diverse domains. Experimental results show a significant improvement of 9% and 13% in sensitivity at 0.3 FPI over state-of-the-art UDA techniques on publicly available benchmark INBreast and DDSM datasets respectively. We also report an improvement of 11% and 17% on In-house and RSNA-BSD1K datasets respectively. The source code, pre-trained D-MASTER model, along with RSNA-BSD1K dataset annotations is available at https://dmaster-iitd.github.io/webpage.
Abstract:The exponential increase in COVID-19 patients is overwhelming healthcare systems across the world. With limited testing kits, it is impossible for every patient with respiratory illness to be tested using conventional techniques (RT-PCR). The tests also have long turn-around time, and limited sensitivity. Detecting possible COVID-19 infections on Chest X-Ray may help quarantine high risk patients while test results are awaited. X-Ray machines are already available in most healthcare systems, and with most modern X-Ray systems already digitized, there is no transportation time involved for the samples either. In this work we propose the use of chest X-Ray to prioritize the selection of patients for further RT-PCR testing. This may be useful in an inpatient setting where the present systems are struggling to decide whether to keep the patient in the ward along with other patients or isolate them in COVID-19 areas. It would also help in identifying patients with high likelihood of COVID with a false negative RT-PCR who would need repeat testing. Further, we propose the use of modern AI techniques to detect the COVID-19 patients using X-Ray images in an automated manner, particularly in settings where radiologists are not available, and help make the proposed testing technology scalable. We present CovidAID: COVID-19 AI Detector, a novel deep neural network based model to triage patients for appropriate testing. On the publicly available covid-chestxray-dataset [2], our model gives 90.5% accuracy with 100% sensitivity (recall) for the COVID-19 infection. We significantly improve upon the results of Covid-Net [10] on the same dataset.