Abstract:Long Range - Frequency Hopping Spread Spectrum (LR-FHSS) is an emerging and promising technology recently introduced into the LoRaWAN protocol specification for both terrestrial and non-terrestrial networks, notably satellites. The higher capacity, long-range and robustness to Doppler effect make LR-FHSS a primary candidate for direct-to-satellite (DtS) connectivity for enabling Internet-of-things (IoT) in remote areas. The LR-FHSS devices envisioned for DtS IoT will be primarily battery-powered. Therefore, it is crucial to investigate the current consumption characteristics and Time-on-Air (ToA) of LR-FHSS technology. However, to our knowledge, no prior research has presented the accurate ToA and current consumption models for this newly introduced scheme. This paper addresses this shortcoming through extensive field measurements and the development of analytical models. Specifically, we have measured the current consumption and ToA for variable transmit power, message payload, and two new LR-FHSS-based Data Rates (DR8 and DR9). We also develop current consumption and ToA analytical models demonstrating a strong correlation with the measurement results exhibiting a relative error of less than 0.3%. Thus, it confirms the validity of our models. Conversely, the existing analytical models exhibit a higher relative error rate of -9.2 to 3.4% compared to our measurement results. The presented in this paper results can be further used for simulators or in analytical studies to accurately model the on-air time and energy consumption of LR-FHSS devices.
Abstract:The integration of subterranean LoRaWAN and non-terrestrial networks (NTN) delivers substantial economic and societal benefits in remote agriculture and disaster rescue operations. The LoRa modulation leverages quasi-orthogonal spreading factors (SFs) to optimize data rates, airtime, coverage and energy consumption. However, it is still challenging to effectively assign SFs to end devices for minimizing co-SF interference in massive subterranean LoRaWAN NTN. To address this, we investigate a reinforcement learning (RL)-based SFs allocation scheme to optimize the system's energy efficiency (EE). To efficiently capture the device-to-environment interactions in dense networks, we proposed an SFs allocation technique using the multi-agent dueling double deep Q-network (MAD3QN) and the multi-agent advantage actor-critic (MAA2C) algorithms based on an analytical reward mechanism. Our proposed RL-based SFs allocation approach evinces better performance compared to four benchmarks in the extreme underground direct-to-satellite scenario. Remarkably, MAD3QN shows promising potentials in surpassing MAA2C in terms of convergence rate and EE.
Abstract:Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.
Abstract:Despite the immense progress in the recent years, efficient solutions for monitoring remote areas are still missing today. This is especially notable in the context of versatile maritime and offshore use cases, owing to a broader span of operating regions and a lack of radio network infrastructures. In this article, we address the noted challenge by delivering a conceptual solution based on the convergence of three emerging technologies -- unmanned aerial vehicles (UAVs), battery-less sensors, and wireless powered communication networks (WPCNs). Our contribution offers a systematic description of the ecosystem related to the proposed solution by identifying its key actors and design dimensions together with the relevant resources and performance metrics. A system-level modeling-based evaluation of an illustrative scenario delivers deeper insights into the considered operation and the associated trade-offs. Further, unresolved challenges and perspective directions are underpinned for a subsequent study.