Abstract:Exploratory landscape analysis (ELA) is a well-established tool to characterize optimization problems via numerical features. ELA is used for problem comprehension, algorithm design, and applications such as automated algorithm selection and configuration. Until recently, however, ELA was limited to search spaces with either continuous or discrete variables, neglecting problems with mixed variable types. This gap was addressed in a recent study that uses an approach based on target-encoding to compute exploratory landscape features for mixedvariable problems. In this work, we investigate an alternative encoding scheme based on SHAP values. While these features do not lead to better results in the algorithm selection setting considered in previous work, the two different encoding mechanisms exhibit complementary performance. Combining both feature sets into a hybrid approach outperforms each encoding mechanism individually. Finally, we experiment with two different ways of meta-selecting between the two feature sets. Both approaches are capable of taking advantage of the performance complementarity of the models trained on target-encoded and SHAP-encoded feature sets, respectively.
Abstract:The recently proposed MA-BBOB function generator provides a way to create numerical black-box benchmark problems based on the well-established BBOB suite. Initial studies on this generator highlighted its ability to smoothly transition between the component functions, both from a low-level landscape feature perspective, as well as with regard to algorithm performance. This suggests that MA-BBOB-generated functions can be an ideal testbed for automated machine learning methods, such as automated algorithm selection (AAS). In this paper, we generate 11800 functions in dimensions $d=2$ and $d=5$, respectively, and analyze the potential gains from AAS by studying performance complementarity within a set of eight algorithms. We combine this performance data with exploratory landscape features to create an AAS pipeline that we use to investigate how to efficiently select training sets within this space. We show that simply using the BBOB component functions for training yields poor test performance, while the ranking between uniformly chosen and diversity-based training sets strongly depends on the distribution of the test set.