Abstract:Recent AI advances have enabled multi-modal systems to model and translate diverse information spaces. Extending beyond text and vision, we introduce OneProt, a multi-modal AI for proteins that integrates structural, sequence, alignment, and binding site data. Using the ImageBind framework, OneProt aligns the latent spaces of modality encoders along protein sequences. It demonstrates strong performance in retrieval tasks and surpasses state-of-the-art methods in various downstream tasks, including metal ion binding classification, gene-ontology annotation, and enzyme function prediction. This work expands multi-modal capabilities in protein models, paving the way for applications in drug discovery, biocatalytic reaction planning, and protein engineering.
Abstract:Deep neural network ensembles are powerful tools for uncertainty quantification, which have recently been re-interpreted from a Bayesian perspective. However, current methods inadequately leverage second-order information of the loss landscape, despite the recent availability of efficient Hessian approximations. We propose a novel approximate Bayesian inference method that modifies deep ensembles to incorporate Stein Variational Newton updates. Our approach uniquely integrates scalable modern Hessian approximations, achieving faster convergence and more accurate posterior distribution approximations. We validate the effectiveness of our method on diverse regression and classification tasks, demonstrating superior performance with a significantly reduced number of training epochs compared to existing ensemble-based methods, while enhancing uncertainty quantification and robustness against overfitting.
Abstract:Fine-tuned Large Language Models (LLMs) often suffer from overconfidence and poor calibration, particularly when fine-tuned on small datasets. To address these challenges, we propose a simple combination of Low-Rank Adaptation (LoRA) with Gaussian Stochastic Weight Averaging (SWAG), facilitating approximate Bayesian inference in LLMs. Through extensive testing across several Natural Language Processing (NLP) benchmarks, we demonstrate that our straightforward and computationally efficient approach improves model generalization and calibration. We further show that our method exhibits greater robustness against distribution shift, as reflected in its performance on out-of-distribution tasks.