Abstract:Explanation methods applied to sequential models for multivariate time series prediction are receiving more attention in machine learning literature. While current methods perform well at providing instance-wise explanations, they struggle to efficiently and accurately make attributions over long periods of time and with complex feature interactions. We propose WinIT, a framework for evaluating feature importance in time series prediction settings by quantifying the shift in predictive distribution over multiple instances in a windowed setting. Comprehensive empirical evidence shows our method improves on the previous state-of-the-art, FIT, by capturing temporal dependencies in feature importance. We also demonstrate how the solution improves the appropriate attribution of features within time steps, which existing interpretability methods often fail to do. We compare with baselines on simulated and real-world clinical data. WinIT achieves 2.47x better performance than FIT and other feature importance methods on real-world clinical MIMIC-mortality task. The code for this work is available at https://github.com/layer6ai-labs/WinIT.
Abstract:Leveraging health administrative data (HAD) datasets for predicting the risk of chronic diseases including diabetes has gained a lot of attention in the machine learning community recently. In this paper, we use the largest health records datasets of patients in Ontario,Canada. Provided by the Institute of Clinical Evaluative Sciences (ICES), this database is age, gender and ethnicity-diverse. The datasets include demographics, lab measurements,drug benefits, healthcare system interactions, ambulatory and hospitalizations records. We perform one of the first large-scale machine learning studies with this data to study the task of predicting diabetes in a range of 1-10 years ahead, which requires no additional screening of individuals.In the best setup, we reach a test AUC of 80.3 with a single-model trained on an observation window of 5 years with a one-year buffer using all datasets. A subset of top 15 features alone (out of a total of 963) could provide a test AUC of 79.1. In this paper, we provide extensive machine learning model performance and feature contribution analysis, which enables us to narrow down to the most important features useful for diabetes forecasting. Examples include chronic conditions such as asthma and hypertension, lab results, diagnostic codes in insurance claims, age and geographical information.