Abstract:Advancing defensive mechanisms against adversarial attacks in generative models is a critical research topic in machine learning. Our study focuses on a specific type of generative models - Variational Auto-Encoders (VAEs). Contrary to common beliefs and existing literature which suggest that noise injection towards training data can make models more robust, our preliminary experiments revealed that naive usage of noise augmentation technique did not substantially improve VAE robustness. In fact, it even degraded the quality of learned representations, making VAEs more susceptible to adversarial perturbations. This paper introduces a novel framework that enhances robustness by regularizing the latent space divergence between original and noise-augmented data. Through incorporating a paired probabilistic prior into the standard variational lower bound, our method significantly boosts defense against adversarial attacks. Our empirical evaluations demonstrate that this approach, termed Robust Augmented Variational Auto-ENcoder (RAVEN), yields superior performance in resisting adversarial inputs on widely-recognized benchmark datasets.
Abstract:Self-supervised learning for image denoising problems in the presence of denaturation for noisy data is a crucial approach in machine learning. However, theoretical understanding of the performance of the approach that uses denatured data is lacking. To provide better understanding of the approach, in this paper, we analyze a self-supervised denoising algorithm that uses denatured data in depth through theoretical analysis and numerical experiments. Through the theoretical analysis, we discuss that the algorithm finds desired solutions to the optimization problem with the population risk, while the guarantee for the empirical risk depends on the hardness of the denoising task in terms of denaturation levels. We also conduct several experiments to investigate the performance of an extended algorithm in practice. The results indicate that the algorithm training with denatured images works, and the empirical performance aligns with the theoretical results. These results suggest several insights for further improvement of self-supervised image denoising that uses denatured data in future directions.