Abstract:In today's digital age, characterized by rapid news consumption and increasing vulnerability to propaganda, fostering citizens' critical thinking is crucial for stable democracies. This paper introduces the design of ClarifAI, a novel automated propaganda detection tool designed to nudge readers towards more critical news consumption by activating the analytical mode of thinking, following Kahneman's dual-system theory of cognition. Using Large Language Models, ClarifAI detects propaganda in news articles and provides context-rich explanations, enhancing users' understanding and critical thinking. Our contribution is threefold: first, we propose the design of ClarifAI; second, in an online experiment, we demonstrate that this design effectively encourages news readers to engage in more critical reading; and third, we emphasize the value of explanations for fostering critical thinking. The study thus offers both a practical tool and useful design knowledge for mitigating propaganda in digital news.
Abstract:The prevalence of propaganda in our digital society poses a challenge to societal harmony and the dissemination of truth. Detecting propaganda through NLP in text is challenging due to subtle manipulation techniques and contextual dependencies. To address this issue, we investigate the effectiveness of modern Large Language Models (LLMs) such as GPT-3 and GPT-4 for propaganda detection. We conduct experiments using the SemEval-2020 task 11 dataset, which features news articles labeled with 14 propaganda techniques as a multi-label classification problem. Five variations of GPT-3 and GPT-4 are employed, incorporating various prompt engineering and fine-tuning strategies across the different models. We evaluate the models' performance by assessing metrics such as $F1$ score, $Precision$, and $Recall$, comparing the results with the current state-of-the-art approach using RoBERTa. Our findings demonstrate that GPT-4 achieves comparable results to the current state-of-the-art. Further, this study analyzes the potential and challenges of LLMs in complex tasks like propaganda detection.
Abstract:We describe our approach to create and deliver a custom voice for a conversational AI use-case. More specifically, we provide a voice for a Digital Einstein character, to enable human-computer interaction within the digital conversation experience. To create the voice which fits the context well, we first design a voice character and we produce the recordings which correspond to the desired speech attributes. We then model the voice. Our solution utilizes Fastspeech 2 for log-scaled mel-spectrogram prediction from phonemes and Parallel WaveGAN to generate the waveforms. The system supports a character input and gives a speech waveform at the output. We use a custom dictionary for selected words to ensure their proper pronunciation. Our proposed cloud architecture enables for fast voice delivery, making it possible to talk to the digital version of Albert Einstein in real-time.