Abstract:This paper explores the design of a propaganda detection tool using Large Language Models (LLMs). Acknowledging the inherent biases in AI models, especially in political contexts, we investigate how these biases might be leveraged to enhance critical thinking in news consumption. Countering the typical view of AI biases as detrimental, our research proposes strategies of user choice and personalization in response to a user's political stance, applying psychological concepts of confirmation bias and cognitive dissonance. We present findings from a qualitative user study, offering insights and design recommendations (bias awareness, personalization and choice, and gradual introduction of diverse perspectives) for AI tools in propaganda detection.
Abstract:In today's digital age, characterized by rapid news consumption and increasing vulnerability to propaganda, fostering citizens' critical thinking is crucial for stable democracies. This paper introduces the design of ClarifAI, a novel automated propaganda detection tool designed to nudge readers towards more critical news consumption by activating the analytical mode of thinking, following Kahneman's dual-system theory of cognition. Using Large Language Models, ClarifAI detects propaganda in news articles and provides context-rich explanations, enhancing users' understanding and critical thinking. Our contribution is threefold: first, we propose the design of ClarifAI; second, in an online experiment, we demonstrate that this design effectively encourages news readers to engage in more critical reading; and third, we emphasize the value of explanations for fostering critical thinking. The study thus offers both a practical tool and useful design knowledge for mitigating propaganda in digital news.