Abstract:We present TALE, a novel training-free framework harnessing the generative capabilities of text-to-image diffusion models to address the cross-domain image composition task that focuses on flawlessly incorporating user-specified objects into a designated visual contexts regardless of domain disparity. Previous methods often involve either training auxiliary networks or finetuning diffusion models on customized datasets, which are expensive and may undermine the robust textual and visual priors of pre-trained diffusion models. Some recent works attempt to break the barrier by proposing training-free workarounds that rely on manipulating attention maps to tame the denoising process implicitly. However, composing via attention maps does not necessarily yield desired compositional outcomes. These approaches could only retain some semantic information and usually fall short in preserving identity characteristics of input objects or exhibit limited background-object style adaptation in generated images. In contrast, TALE is a novel method that operates directly on latent space to provide explicit and effective guidance for the composition process to resolve these problems. Specifically, we equip TALE with two mechanisms dubbed Adaptive Latent Manipulation and Energy-guided Latent Optimization. The former formulates noisy latents conducive to initiating and steering the composition process by directly leveraging background and foreground latents at corresponding timesteps, and the latter exploits designated energy functions to further optimize intermediate latents conforming to specific conditions that complement the former to generate desired final results. Our experiments demonstrate that TALE surpasses prior baselines and attains state-of-the-art performance in image-guided composition across various photorealistic and artistic domains.
Abstract:We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving. Traditional point-based 3D object detectors often employ architectures that rely on a progressive downsampling of points. While this method effectively reduces computational demands and increases receptive fields, it will compromise the preservation of crucial non-local information for accurate 3D object detection, especially in the complex driving scenarios. To address this, we introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector by efficiently modeling longer-range inter-dependency while including only a negligible overhead. Concretely, the Cross-Cluster Shifting operation enhances the conventional design by shifting partial channels from neighboring clusters, which enables richer interaction with non-local regions and thus enlarges the receptive field of clusters. We conduct extensive experiments on the KITTI, Waymo, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD in both detection accuracy and runtime efficiency.