Abstract:In this paper, we present an exploration and assessment of employing a centralized deep Q-network (DQN) controller as a substitute for the prevalent use of PID controllers in the context of 6DOF swimming robots. Our primary focus centers on illustrating this transition with the specific case of underwater object tracking. DQN offers advantages such as data efficiency and off-policy learning, while remaining simpler to implement than other reinforcement learning methods. Given the absence of a dynamic model for our robot, we propose an RL agent to control this multi-input-multi-output (MIMO) system, where a centralized controller may offer more robust control than distinct PIDs. Our approach involves initially using classical controllers for safe exploration, then gradually shifting to DQN to take full control of the robot. We divide the underwater tracking task into vision and control modules. We use established methods for vision-based tracking and introduce a centralized DQN controller. By transmitting bounding box data from the vision module to the control module, we enable adaptation to various objects and effortless vision system replacement. Furthermore, dealing with low-dimensional data facilitates cost-effective online learning for the controller. Our experiments, conducted within a Unity-based simulator, validate the effectiveness of a centralized RL agent over separated PID controllers, showcasing the applicability of our framework for training the underwater RL agent and improved performance compared to traditional control methods. The code for both real and simulation implementations is at https://github.com/FARAZLOTFI/underwater-object-tracking.
Abstract:In this paper, we investigate a hybrid scheme that combines nonlinear model predictive control (MPC) and model-based reinforcement learning (RL) for navigation planning of an autonomous model car across offroad, unstructured terrains without relying on predefined maps. Our innovative approach takes inspiration from BADGR, an LSTM-based network that primarily concentrates on environment modeling, but distinguishes itself by substituting LSTM modules with transformers to greatly elevate the performance our model. Addressing uncertainty within the system, we train an ensemble of predictive models and estimate the mutual information between model weights and outputs, facilitating dynamic horizon planning through the introduction of variable speeds. Further enhancing our methodology, we incorporate a nonlinear MPC controller that accounts for the intricacies of the vehicle's model and states. The model-based RL facet produces steering angles and quantifies inherent uncertainty. At the same time, the nonlinear MPC suggests optimal throttle settings, striking a balance between goal attainment speed and managing model uncertainty influenced by velocity. In the conducted studies, our approach excels over the existing baseline by consistently achieving higher metric values in predicting future events and seamlessly integrating the vehicle's kinematic model for enhanced decision-making. The code and the evaluation data are available at https://github.com/FARAZLOTFI/offroad_autonomous_navigation/).