UCLA
Abstract:Generative models producing images have enormous potential to advance discoveries across scientific fields and require metrics capable of quantifying the high dimensional output. We propose that astrophysics data, such as galaxy images, can test generative models with additional physics-motivated ground truths in addition to human judgment. For example, galaxies in the Universe form and change over billions of years, following physical laws and relationships that are both easy to characterize and difficult to encode in generative models. We build a conditional denoising diffusion probabilistic model (DDPM) and a conditional variational autoencoder (CVAE) and test their ability to generate realistic galaxies conditioned on their redshifts (galaxy ages). This is one of the first studies to probe these generative models using physically motivated metrics. We find that both models produce comparable realistic galaxies based on human evaluation, but our physics-based metrics are better able to discern the strengths and weaknesses of the generative models. Overall, the DDPM model performs better than the CVAE on the majority of the physics-based metrics. Ultimately, if we can show that generative models can learn the physics of galaxy evolution, they have the potential to unlock new astrophysical discoveries.
Abstract:In this work, we identify elements of effective machine learning datasets in astronomy and present suggestions for their design and creation. Machine learning has become an increasingly important tool for analyzing and understanding the large-scale flood of data in astronomy. To take advantage of these tools, datasets are required for training and testing. However, building machine learning datasets for astronomy can be challenging. Astronomical data is collected from instruments built to explore science questions in a traditional fashion rather than to conduct machine learning. Thus, it is often the case that raw data, or even downstream processed data is not in a form amenable to machine learning. We explore the construction of machine learning datasets and we ask: what elements define effective machine learning datasets? We define effective machine learning datasets in astronomy to be formed with well-defined data points, structure, and metadata. We discuss why these elements are important for astronomical applications and ways to put them in practice. We posit that these qualities not only make the data suitable for machine learning, they also help to foster usable, reusable, and replicable science practices.